
Page 1

VOLUME IV ISSUE 1

A 100+ page issue of the Agile Times? Quality content by people who
are shaking and making, rather than just hypothesizing and theorizing?
That is Volume 4 of the Agile Times, which owes its existence to the efforts
of the finest team of editors that anyone could ask for. Just wait until you
see Volume 5 late this spring!

There is so much rich information available about Agile processes that
the Agile Times has been expanded into a number of subject areas. Each
subject area has its own editor who writes, solicits articles for that area,
and pulls all the content together for publication.. These areas are listed on
the following pages along with each area editor’s email address. Contact
the editors directly with comments or to offer submissions of your own. The
table of contents reflects the content for each of the areas.

--Ken Schwaber

THE SPREAD OF AGILE AND AGILE CONFERENCES

This has been a great year for Agile conferences. The marketplace has
become more interested in deeper information about Agile. Interest has
picked up as word has gotten out that Agile can deliver better, quicker,
and more than other approaches. A survey done for ThoughtWorks by Liz
Barnett, a Forrester Research Vice President, indicates that the aspects of
ThoughtWork’s implementation of Agile that are most important to
ThoughtWorks customers were efficiency and early delivery of business
benefits. Check out the study at www.thoughtworks.com/
forrester_tei.pdf.

As Agile Alliance membership requested in a survey, the Agile Alliance
Board of Directors has formed a Conference Committee that is bringing
the Agile Development Conference and the XP/AU Conference together
as one conference for 2005. Thanks to many people to mention for
making this happen. In addition, a number of other conferences are
springing up, including various XPDays, Scrum Gatherings, and the 2nd

Agile Canadian Network Workshop.

Scrum Gathering, April 20-25, Vienna Austria
gathering.scrumalliance.org

XP2004, June 6-10, Garmisch-Partenkirchen, Germany
www.xp2004.org

Canadian Agile Network Workshop, June 20-21, Banff, Canada
www.agilenetwork.ca/ws2004

Agile Development Conference, June 23-26, Salt Lake CIty, Utah
www.agiledevelopmentconference.com

XP/Agile Universe ,August 15-18, Calgary, Alberta, Canada
www.xpuniverse.com

Copyright Agile Alliance 2004

All rights reserved

No copying or distribution

without written permission.

The Agile Times A quarterly publication of the AgileAlliance

Volume IV; Issue 1

Inside This Issue

Mike Cohn, “Best Practices”

Diana Larsen, “Team Agility:
Exploring Self-Organizing
Software Teams”

Raghu Misra, “Agile Distributed
Teams”

Mike Griffiths, “DSDM Ten
Years On: RAD Relic Or Agile
Advocate?”

Cliff Gregory, “Is ‘Objective
Measurement’ The Key To
Accepting Agile?”

Martin Fowler, “Design In Agile
Processes”

Scott Bogartz, “Selling Agility
To Senior Management”

Brian Marick, “Testing Tips”

Nancy Van Schooenderwoert,
“Transitioning To XP In An
Embedded Environment”

Boris Gloger, “Computer
Programming Is A Social
Activity”

Page 2

Volume IV; Issue 1

February 2004Editorial StaffEditorial StaffEditorial StaffEditorial StaffEditorial Staff

Marco Abis, abis@agilemovement.it, Agile Europe

Steve Berczuk, steve@berczuk.com, Agile Foundations

Scott Bogartz, scottbogartz@yahoo.com, Selling Agile To Management

Jeremy Brown, jeremy@quero.com, Book Corner

Chris Celsie, ccelsie@idirect.com, General Editorial

Mark Clifton, webmaster@knowledgeautomation.com, Unit Testing

Mike Cohn, mike@mountaingoatsoftware.com, Best Practices

Lisa Crispin, lisa_crispin2001@yahoo.com, Introducing Agile To New Environments

Esther Derby, derby@estherderby.com, Agile Project Management

Bryan Dollery, bryan@greenpulse.com, Agile Sociology And Psychology

Boris Gloger, boris.gloger@chello.at, Agile People and Sociology

Cliff Gregory, cliff@gregory.net, Agile Management

Mike Griffiths, mikeg@quadrus.com, DSDM

Michael Ivey, mdi@iveyandbrown.com, Scrum Success Stories

Martha Lindeman, mlindeman@agileinteractions.com, Agile Interactions

Brian Marick, barick@visibileworkings.com, Agile Testing

Trevor Mather, tmather@thoughworks.com, The Thoughtworks Perspective

Kent McDonald, kent@madsax.com, Agile Project Management

Raghu Misra, raghu@shipxpress.com, Agile Distributed Teams

Dan Pierce, dan@embeddedeng.com, Embedded Software

Mel Pullen, mel.pullen@symbian.com, Hard Questions For Hard Projects

Meade Rubenstein, Project Processes Tricks and Tips

Nancy Van Schooenderwoert, vanschoo@rcn.com, Ask the Experts

Andy Winskill, andy.winskill@rosewoodsoftware.com, The Agile Enterprise

Ken Schwaber, ken.schwaber@verizon.net, Editor in Chief

Carey Schwaber, Production Editor

Page 3

Volume IV; Issue 1

February 2004Table of ContentsTable of ContentsTable of ContentsTable of ContentsTable of Contents

4 Steve Berczuk, “Agile Foundations”

7 Mike Cohn, “Best Practices”

8 Giovanni Asproni, “ Motivation, Teamwork, and Agile Development”

16 Paul Oldfield, “Mix and Match: Making Sense of the Best Practices Jigsaw”

20 Tim Bacon, “Asking Effective Questions: Collaborative Problem-Solving”

22 Diana Larsen, “Team Agility: Exploring Self-Organizing Software Teams”

25 J.B. Rainsberger, “Write Tests Your Customers Can Read WIth FIT and FitNesse”

28 Marc Clifton, “Unit Test Patterns”

37 Brad Appleton, “Extreme Locality”

40 Martha Lindeman, Ph.D., “The Four Ways to Organize a User Interface”

41 Raghu Misra, “Agile Distributed Teams”

45 Kent McDonald, “The Pragmatic Project Leader”

49 Mike Griffiths, “DSDM Ten Years On: RAD Relic Or Agile Advocate?”

52 Barbara Roberts, “The Unpredictable Element: People”

54 Barry Fazackerley, “The Business Case for the Business Study”

55 Marco Abis, “Agile Europe”

56 Cliff Gregory, “Is ‘Objective Measurement’ The Key To Accepting Agile?”

59 Martin Fowler, “Design In Agile Process”

61 Scott Bogartz, “Selling Agility to Senior Management”

64 Michael Ivey, “Scrum Success Stories”

65 Scott Bogartz, “Agile Methods: The Tao of Software Development”

68 Brian Marick, “Testing Tips”

69 Dan Pierce, “Agile Embedded: The Ground Floor”

72 Nancy Van Schooenderwoert, “Transitioning To XP In Embedded Environments”

74 James Grenning, “Progress Before Hardware”

79 Bill Greene, “Using Agile Testing Methods To Validate FIrmware”

81 Mel Pullen, “Hard Questions For Hard Projects”

88 Lisa Crispin, “Implementing Agile”

89 Boris Gloger, “Sociology And People”

89 Linda Rising, “Patterns For Introducing New Ideas Into Organizations”

91 Boris Gloger, “Computer Programming Is A Social Activity”

96 Andy Winskill, “Introducing The Agile Enterprise”

97 Alan Francis, “Thoughts From Thoughtworks”

97 Mike Cohn, “Book Corner”

98 Deborah Hartmann, “Book Review: Slack”

Page 4

Volume IV; Issue 1

February 2004

Agile Foundations

Steve Berczuk

To work effectively with Agile Methods you must have some basic skills. How well you
master these skills can determine how successful you are in implementing your Agile
Process. This section will help you to understand the traditional “foundation” skills that
Agile methods build on.

PREREQUISITES FOR AGILE SOFTWARE DEVELOPMENT

Agile methods do not tell us everything about how to develop software. Agile methods rely on their
users having some basic software development skills. To be effective at using Agile methods, you need to
know more than just the practices and principles of the Agile method of your choice. This section is for
explicitly discussing what some of these basic skills are, and how to apply them in an Agile environment.
This article provides a roadmap to the topic. Brad Appleton’s article Extreme Locality talks in detail about
how locality of reference can minimize and simplify documentation and traceability in an Agile process.

SO WHAT?

At first glance, this seems to be stating the obvious; Agile software development is software develop-
ment after all. There are a few reasons that I feel this topic is worth discussing:

• In the excitement about using a new approach to developing software, the team can forget that
they are not building from scratch.
• The success of an Agile project depends as much on the execution of basic skills as the Agile
practices. When an “Agile” project fails, customers are as likely to blame the method, which is new, as
they are the underlying skills of the team.
• Agile software development methods tend to favor generalists over specialists, so an Agile
software developer needs to have a larger toolbox of basic skills. A developer may have a certain
skill to offer the rest of the team, and it is important for developers to share that experience with
others on the team. The team will work better if everyone has enough knowledge of basic issues to
know what they do not know. There is much power in knowing enough to know when you need
help.
• Agile approaches use skills in different ways than traditional ones. Having a good understanding
of foundation concepts will help you understand how to adapt them. This knowledge will also help
you help others on the team make the transition to Agile approaches by bridging the cultural divide.

Judging from some recurring threads on the extreme programming mailing list (among other places), a
lot of people seem interested in learning how to apply certain skills in their Agile projects. We need to
understand better what we can learn from the traditional practices, and what we should discard or
adapt. In this article I hope to:

• Describe some of the basic skills that one needs in addition to, say, the practices that one might
find described in a book on Extreme Programming [1] or Scrum [2].
• Provide pointers to places to learn about some basic skills
• Briefly discuss how to apply these skills in an Agile team. Future columns will discuss this issue in
more detail for specific skills.

In this issue I’ll provide a list of some of the skills I believe need more discussion in the context of Agile
software development. I hope that this list can start a discussion. I’d also appreciate hearing your views on
this topic.

WHAT COMPRISES THE FOUNDATION?

Any list that I make here will be incomplete, but some items seem to be common topics of discussion,
often because they are skills that are a bit of a mystery even for those on non-Agile teams. These are skills

Page 5

Given a list of disciplines, the issue is more about how applying a discipline differs in an Agile team,
than whether or not the skill is useful. This often gets lost when the focus of conversation is how to apply an
Agile method. Part of this has to do with our use of language; “Change Management,” “Version Control,”
“Databases” and the like have developed very process-heavy meanings. Many Agile developers feel that
“process” can get in the way of developing software, which is why we subscribe to the Agile principles,
especially “Individuals and Interactions over Processes and Tools.” Yet, many processes facilitate interactions
among individuals, for example. And the lack of certain processes and tools can make your development
move more slowly.

Agile Teams practice change management, Version control, and use databases. And in many cases
these tools enable agility. We should understand how to use some of these processes in a way that fur-
thers, rather than hinders, agility. Some of the areas that I believe are foundation skills that are often
ignored are:

• Configuration and version management (this includes change management)
• Database design and schema management
• Requirements gathering and management and customer expectation management skills. Since
these items are the once most often viewed as “not Agile,” I’ll use them as a start for a list of
techniques that Agile teams should not ignore.

All of these areas have established knowledge resources. While most of us understand that one can’t
just buy a copy of eXtreme Programming eXplained [1] and then start building software in an Agile
fashion, there are some who need some guidance about how to learn how basic skills fit in with XP and
other Agile methods. We often treat many of the skills needed to build software as tacit skills. We can
benefit from making them explicit.

BRIDGING THE GAP

Agile software development methods are effective at addressing issues common to many environ-
ments: uncertainty and risk. While Agile practices are well suited to the reality of many work environ-
ments, they do not reflect the way that most environments currently work. Just as being Agile is about
change and adaptability, being effective at using Agile practices in an organization requires that you
move others in the organization to a new way of thinking. Having a better understanding of commonly
“misunderstood” areas can only help the Agile advocate promote Agile software development. What
follows is some brief information on four topic areas that all Agile developers should understand.

SOFTWARE CONFIGURATION MANAGEMENT

Many Agile developers often think of software configuration management (SCM) as a very heavy
weight discipline that adds overhead and complexity. This perception is often the result of bad experiences
in an organization where SCM was used to control change, rather than track change. In fact, SCM practices
can enhance the ability to make changes. Proper version management discipline can, in combination with
good unit testing practices make one feel safer about attempting change: if something isn’t working you
can back off to the last version that worked. You can think of codelines as integration points for your
team.

Branching is one of the most feared SCM practices because it can add complexity and work to a
project. But when done properly, creating a branch can be the simplest way to free a team to work on
new projects in an Agile manner, while still supporting older code. (Of course, you want to stop supporting
the it eventually.)

Volume IV; Issue 1

February 2004

Agile Foundations

Steve Berczuk

Page 6

practices are essential for coordinating the work of people on your team. To learn more:

• The book Software Configuration Management Patterns: Effective Teamwork, Practical

Integration [3], which I wrote with Brad Appleton, covers the key practices team must use to work
effectively together. The pattern language in the book shows how version control practices integrate
with test, integration, and build practices. Www.scmpatterns.com has links to other useful resources.
• Pragmatic Version Control, by (Dave Thomas and Andy Hunt: As the title says, it’s a pragmatic guide
to using CVS usefully. [4]
• Configuration Management Principles and Practice [5], by Hass is in the Adison-Wesley Agile Series,
but talks about CMM and other non Agile things. It is worth a scan to learn how to communicate with the
more process heavy people on your team.
• CM Crossroads News (http://www.cmcrossroads.com/newsletter/) has a monthly column on Agile
Software Configuration Management that Brad Appleton, Steve Konieczka and I write in which we
discuss how to bridge the gap between “formal” and “Agile” SCM environments. The CM Crossroads
site has numerous discussion forums of interest to those concerned with Configuration Management.

UNDERSTANDING CUSTOMER NEEDS

Agile processes emphasize interacting with, and getting feedback from, customers. Developers often
don’t always know how to use the feedback effectively. Agile methods have excellent mechanisms for
allowing development teams to manage the expectations of their customers, but the presence to feed-
back loops isn’t always enough; you need to know how to use them effectively. To learn more:

• Are Your Lights On? How to Figure out what the Problem REALLY Is [6] by Gause and Weinberg is a
very readable book that demonstrates the importance of really understanding your customer. This book
explains the difference between “wants” and “needs” and how to help your customer figure that out so
that you can spend your time working on useful tasks.
• Requirements by Collaboration : Workshops for Defining Needs [7] by Ellen Gottesdiener is a
wonderful book about how to emphasize customer collaboration over contract negotiation by getting the
customers together to harness the power of customer collaboration and how to successfully facilitate
customer meetings.
• Managing Expectations [8] by Naomi Karten (Foreword by Gerald M. Weinberg) is all about
managing customer expectations. Her more recent work Communication Gaps and How to Close
Them [9] is more generally about managing expectations and perceptions and clarifying
misunderstanding (both with customers as well as with team members and other project
stakeholders).

DATABASE ISSUES

Applications use databases, either because they need to interact with data that already happens
tobe in a database, or because using a database (correctly) just makes things simpler (really!). Databases
can be surrounded with mystery because data and databases are treated differently than code. To learn
more about how to work with databases:

 · Joe Celko’s SQL for Smarties: Advanced SQL Programming [10] by Joe Celko is a very pragmatic
book on how to work with the language of databases.
· Agile Database Techniques: Effective Strategies for the Agile Software Developer, [11] by Scott
Ambler, is a guide to working with databases. What makes this book especially interesting is Scott
discusses how to navigate the gap between the formal “DBA” centric world, and the Agile team.
· The article “Evolutionary Database Design” by Martin Fowler and Pramod Sadalage is a concise

Volume IV; Issue 1

February 2004

Agile Foundations

Steve Berczuk

Page 7

summary of the issues on working with databases and DBAs in an Agile environment. http://
martinfowler.com/articles/evodb.html.
· Brad Appleton, Steve Konieczka and I wrote a column in a the January 2004 CM Crossroads
News: “Applying Agile SCM to Databases” that discusses the intersection of Agile SCM and Agile
databases: www.cmcrossroads.com/newsletter/articles/Agilejan04.pdf.

IN SUMMARY

This is a big topic, the details of which seem boring when compared to the excitement of adapting a
team to use Scrum or XP. But moving to an Agile method will more likely than not fail if the team expects
that having a copy of Extreme Programming Explained [1] around is all that is necessary for success.

REFERENCES

1. Beck, K., eXtreme programming eXplained : embrace change. 2000, Reading, MA: Addison-Wesley.

2. Schwaber, K. and M. Beedle, Agile software development with scrum. Series in agile software development.
2002, Upper Saddle River, NJ: Prentice Hall. xvi, 158 p.

3. Berczuk, S.P. and B. Appleton, Software Configuration Management Patterns : Effective Teamwork, Practical
Integration. 2003, Boston, MA: Addison-Wesley.

4. Thomas, D. and A. Hunt, Pragmatic Version Control using CVS. 2003, Dallas, TX: The Pragmatic Bookshelf.

5. Hass, A.M.J., Configuration Management Principles and Practice. The Agile software development series. 2003,
Boston, MA: Addison-Wesley. xiv, 370.

6. Gause, D.C. and G.M. Weinberg, Are Your Lights On? How to Figure out what the Problem REALLY Is. 1990,
New York, NY: Dorset House.

7. Gottesdiener, E., Requirements by Collaboration : Workshops for Defining Needs. 2002, Boston: Addison-
Wesley. xxvi, 333 p.

8. Karten, N., Managing Expectations. 1994, New York, NY: Dorset House.

9. Karten, N., Communication Gaps and How to Close Them. 2002, New York: Dorset House. xiv, 362

10. Celko, J., Joe Celko’s SQL for Smarties : Advanced SQL Programming. 2nd ed. 2000, San Francisco: Morgan
Kaufmann. xxi, 553 p.

11. Ambler, S.W., Agile Database Techniques : Effective Strategies for the Agile Software Developer. 2003, India-
napolis, IN: Wiley. xxvii, 447 p.

12. Constantine, L.L. and L.A.D. Lockwood, Software for Use : a Practical Guide to the Models and Methods of
Usage-Centered Design. 1999, Reading, Mass.: Addison Wesley. xvi, 579.

Volume IV; Issue 1

February 2004
Best Practices

Mike Cohn

I used to believe in “best practices.” But, after enough years in the field I no longer believe. Rather than
thinking in terms of “best practices,” I now think in terms of “good practices in context.” A “good practice in
context” is a set of activities or behaviors that have been demonstrated to work when applied within a
certain context. Holding a daily standup meeting with all team members assembled in one room is a good
practice that has worked well for me in the context of relatively small, co-located teams. The exact same
practice would not work well for 100 developers: the room they’d need would be too big and it would
take too long for each person to comment on what they did yesterday, what they’re doing today, and
what problems they’re facing.

Even worse, the term best practice is a dangerous one. To call one practice “best” implies that all others
are inferior. They may not be; one practice may be best in one context while another practice is better in
a different context. For example, I have seen teams excel with pair programming and with rigorous
Fagan-style code inspections. I don’t know which practice is “best.” I do, however, know that each has
worked for me in the past when applied within specific contexts.

Volume IV; Issue 1

February 2004

Agile Foundations

Steve Berczuk

Page 8

Best practices is also a dangerous term because it brings to mind a collection of practices that can simply be
combined into a “best process.” But this doesn’t work. There is no guarantee that a collection of so-called best
practices will result in even an adequate overall process, let alone a best one.

With this mind, this inaugural installment of the Best Practices section of the Agile Times features an article
by Giovanni Asproni in which he looks at the role of motivation in agile processes and considers the impact of
an agile process on teamwork. In a second article, Paul Oldfield takes a look at one aspect of how a mix-and-
match approach to practices must be managed in order to lead to an adequate process.

If you have suggestions for future Best Practices columns, or would like to contribute an article, please
contact Mike Cohn at mike.cohn@computer.org.

Motivation, Teamwork, And Agile Development

Giovanni Asproni

INTRODUCTION

Motivation as defined by the Merriam-Webster dictionary 11th edition is “1a: the act or process of
motivating b: the condition of being motivated 2: a motivating force, stimulus, or influence: incentive,
drive.” The fact that motivation is the most important factor for productivity and quality is not a new
discovery. It was pointed out for the first time by the studies conducted by Elton Mayo around 1930. Since
then there have been several studies that confirmed the same results in several industries including soft-
ware development [2], [4], [10], [14]. Nevertheless, until recently the main focus has been on process-
centric methodologies, the ones that Jim Highsmith calls Rigorous Software Methodologies (RSM) [5].

The basic assumption behind RSMs is the same as that behind scientific management—that is, that to
improve productivity and quality, it is necessary and sufficient to improve and formalize the activities and
tasks of the development process. In this kind of methodology, people have to adapt to processes. The
advent of Extreme Programming first and the Agile Movement later on has put people back at the center
of the development activities. In these kind of methodologies, “people trump process” [3]; the processes
have to be adapted to the needs of the people involved.

According to Jim Highsmith Agile development methods appeal to developers because they reflect
how software really gets developed [5]. In this article I claim that Agile methods also appeal to developers
because they reflect how they really like to develop software. Since nowadays most software is devel-
oped by teams, I have taken the approach of showing the strong connections between motivation and
effective teamwork and then showing how Agile development methods are related to the latter.

MOTIVATION

The classic experiments that demonstrated the influence of motivation on productivity were conducted
by Elton Mayo between 1924 and 1932 at the Hawthorne Works of the Western Electric Company in
Chicago [8]. The phenomenon that these studies discovered is known as the “Hawthorne Effect.” The
original purpose of the experiments was to find the effects of illumination on productivity. The results were
quite surprising:

• When illumination was increased, productivity went up.
• When illumination was decreased, productivity went up.
• When illumination was held constant, productivity went up.

After seeing these results, Mayo and his associates began to wonder what kind of changes in the
work environment could influence productivity. They set up an experimental group by pulling six
women from the relay assembly line. The group was isolated from the rest of the factory and put
under a supervisor who had management style akin to a leadership-collaboration style [5].

Volume IV; Issue 1

February 2004

Best Practices

Mike Cohn

Page 9

The experiment consisted of introducing some variations to the work conditions. For example, the
reseachers reduced the number of working hours and increased the number and length of pauses during
the workday. The researchers introduced the changes always keeping the experimental team informed
and asking for advice or information and listening to complaints. No matter what changes the researchers
introduced, productivity always went up. Eventually, all the improvements were removed; at this point,
productivity was the highest ever recorded.

The researchers’ final conclusion was that the six women formed a team that cooperated spontane-
ously and wholeheartedly to the experiment. The team had considerable freedom of movement, was not
pushed by anyone, and was involved in every decision that could affect its work. Under these conditions
the workers developed a higher sense of responsibility that induced them to do a better job, and at the
same time, feel happier and more satisfied.

These experiments evidenced for the first time that workplaces are social environments, where people
are motivated by many factors other than economic interest. Mayo concluded that recognition, security,
and a sense of belonging are more important to productivity and morale than the physical environment.
He also determined that a friendly relationship with the supervisor is very important in securing the loyalty
and cooperation of the team. These studies represented a breakthrough. In fact, at the times when the
studies where conducted, the prevailing theory was Taylor’s scientific management [12], which was based
on the assumption that the main motivational factor for workers was high wages. Mayo’s findings clearly
undercut Taylor’s theory.

MOTIVATION THEORIES

After the Hawthorne experiments, several theories have been developed to try to characterize
motivation. Each of them has strengths and weaknesses. None of them is general enough to be applied in
every situation. The factors that influence motivation can be identified in two main categories: intrinsic
factors and extrinsic factors. The intrinsic factors come from the work itself and the goals and aspirations of
the individual, (e.g., achievement, possibility for growth, and social relationships), while the extrinsic factors
depend on the surrounding environment, or basic human needs (e.g., salary, office space, and responsibil-
ity).

Some prominent motivation theories that can help in explaining what motivates software developers
are Abraham Maslow’s hierarchy of human needs, Frederick Herzberg’s theory on motivators and hy-
giene factors [4], and David McClelland’s achievement motivation theory [9]. Maslow’s hierarchy of human
needs classifies the human needs in five levels. According to this theory, higher level needs become motiva-
tors only when the lower level ones are satisfied. The hierarchy, ordered from from the lowest to the
highest level, is:

• Physiological (e.g., salary, office space, appropriate facilities, and lightning)
• Safety (e.g., job security, pension scheme, medical insurance, and sick leave)
• Social (e.g., interactions with colleagues and customers, and teamwork)
• Self-esteem (e.g., reputation and the recognition of colleagues, subordinates, and supervisors)
• Self-actualization (e.g., the realization of the full potential of the individual, or “What a man can
be, he must be” [7].)

Herzberg’s motivators and hygiene factors theory relies on different assumptions than Maslow’s does.
According to Hertzberg, there are factors that have a positive impact on the increase of motivation: the
motivators, which Herzberg identifies with the intrinsic factors and other factors that have to be present in
order to avoid de-motivation but by themselves cannot increase motivation; and the the hygiene factors,
which Herzberg identifies with the extrinsic factors [4]. According to this theory, motivators derive from

Volume IV; Issue 1

February 2004

Motivation, Teamwork, And Agile Development

Giovanni Asproni

Page 10

“that unique human characteristic, the ability to achieve and, through achievement, to experience psycho-
logical growth” [4]. They are, in order of importance, achievement, recognition, work itself, responsibility,
advancement, and possibility of growth. Instead, hygiene factors are a consequence of humankind’s
animal nature and relate to the basic biological needs. For example, the need for food makes money a
necessity. Hygiene factors include company policy, office space, supervision, personal life, and salary.

McClelland’s achievement motivation theory characterizes the motivation of a particular class of
people—the ones who have a strong desire to achieve. According to this theory, achievement-motivated
people have the following characteristics:

• They like difficult, but potentially achievable, goals
• They like to take calculated risks
• They are more concerned with personal achievement than with rewards for success
• They have a need for concrete job-relevant feedback and want to know how they’re doing.

These three theories are related to each other. Herzberg’s extrinsic factors correspond to the lower levels of
Maslow classification, whie intrinsic factors correspond to the higher ones. Achievement-motivated people
tend to be more motivated by Herzberg’s intrinsic factors. Achievement itself is an intrinsic factor. In gen-
eral, in the workplace, intrinsic factors tend to be much more effective than extrinsic ones in motivating
people [13].

SOFTWARE DEVELOPERS’ MOTIVATION

The first ten motivational factors for software developers—in decreasing order of importance—re-
ported by Boehm [2] are:

• Achievement
• Possibility for growth
• Work itself
• Recognition
• Advancement
• Technical supervision
• Responsibility
• Relations with peers
• Relations with subordinates
• Salary

The data on which the list is based is more than 25 years old, but I think it is still valid, as it matches
well with my experience. Achievement is the strongest motivator for software developers, furthermore,
most of the other ones are intrinsic factors as well. So McClelland’s and Herzberg’s theories are suited to
explain what motivates them.

TEAMWORK

Nowadays, most endeavors are so complex that they can be accomplished only by a team, so it
makes sense to know what make teams effective. Larson and LaFasto [6] undertook a three-year study
to determine the characteristics of successful teams. The teams studied ranged from football teams to the
team that built the Boeing 747 airplane. There weren’t any software development teams. They found
that all the highly effective teams always had these characteristics:

• A clear, elevating goal
• A results-driven structure

Volume IV; Issue 1

February 2004

Motivation, Teamwork, And Agile Development

Giovanni Asproni

Page 11

• Competent team members
• Unified commitment
• A collaborative climate
• Standards of excellence
• External support and recognition
• Principled leadership

From this list is evident that effective teamwork has a strong relationship with motivation.

A clear, elevating goal is absolutely necessary for achievement. A goal is clear if it is possible to con-
cretely and unequivocally verify that the goal has been achieved. An example of clear goal is “The execut-
able must not use more than half gigabyte of RAM at any given time.” In contrast, here is an example of a
less clear goal: “The executable must not use too much RAM.” A goal is elevating if the team considers it
important or worthwhile. For example, it might be a technical challenge that stretches the skills of the
team to the limits, or it might instill a sense of urgency. People want to be involved in something that gives
them an opportunity to make a difference, so if the goal is clear but not elevating, achieving it could be
difficult, since it might be perceived as uninteresting or even worthless.

A team has a results-driven structure when it is organized according to the goal that it has to attain.
Team structure comprises the process, the communication channels, the roles, and the skills of the team
members. It is an hygiene factor. In fact, its presence makes achievement possible but doesn’t motivate
people, and its absence is certainly demotivating since it can make achievement at best difficult and at
worst impossible.

Competence has an important influence on achievement motivation. Achievement-motivated people
like challenging but potentially attainable goals. Lack of competence can make the goal impossible to
reach. There are two types of competencies, both of which are equally important: technical competencies
and personal competencies. Technical competencies refer to the knowledge and skills necessary to achieve
team goals. They are clearly necessary. Personal competencies refer to the personal skills of the individual
plus the ability to work effectively on teams; they can make the real difference in team performance. A
team of star developers who cannot work well with each other is generally outperformed by a team of
average developers who work well together.

Unified commitment is not easy to define. It is “team spirit” and involves individuals feelins a strong
identification with the team. It happens when all team members are willing to devote time and energies
for the achievement of their common goal pulling together in the same direction. It is when the team has
its own identity. Unified commitment can be fostered by first of all establishing a clear, elevating goal and
then by involving the team in all the phases of the project. Involvement enhances commitment. If unified
commitment is lacking, the possibilities of success are severely reduced.

A collaborative climate is described by the phrase “working well together.” It is important to foster
unified commitment, a sense of belonging, and to give team members a possibility for growth. In order to
have a collaborative climate is necessary for team members to trust each other. In this way, they can focus
on the attainment of the goal. Furthermore, communication and coordination are more efficient, and the
quality of the outcome is greatly improved.

A standard defines an expected level of performance. It defines expectations of the skill levels of team
members, of the initiative and effort they are able to demonstrate, of how the results are to be achieved,
and so on. A standard of excellence defines a standard in which the expected level of performance is very
high. A consequence of setting high standards is that the expectations on the team become high as well.
This positive enforcement can bring the members to exert pressure on each other in order to keep up to

Volume IV; Issue 1

February 2004

Motivation, Teamwork, And Agile Development

Giovanni Asproni

Page 12

expectations creating a whole that is more than the sum of its parts. Consequently, the self-esteem of
team members receives a big boost and so do motivation and product quality. Standards are hard work
and require a great discipline, so the best way to make them easier to follow is to make them concrete.
They should not be stated as general principles like “the code must be of excellent quality,” but rather
should be defined in terms of what can be done concretely in order to follow them. For example, they can
mandate the usage of unit tests, refactoring, and pair programming as techniques to keep the quality of
the code high.

It is interesting to notice that the factor that managers tend to use most to motivate employees—
salary—is listed in the last position. Actually, I have yet to know a good developer who is really motivated
by salary. Certainly I know some very good ones who recently refused highly paid job offers because the
work was not “interesting enough.” Of course, money is important, but it becomes a strong motivator or
de-motivator only when the availability is respectively very high or very low.

External support is about giving the team the resources it needs to get the job done. In motivational
terms, it is an hygiene factor. Without sufficient external support it is very difficult to achieve any goal.
Furthermore, it gives the team the message that their work is not very important (making the goal less
elevating), with consequent drops of motivation and morale. Recognition are the rewards linked to
achievement. The rewards must be tied to performance and viewed as appropriate by team members.
Recognition is a strong motivator for software developers.

Leadership is one of the most critical factors for effective teamwork. A very effective leadership style is
what Larson and Lafasto call a principled leadership [6], and Highsmith [5] calls leadership-collaboration.
Principled leaders don’t give orders, they inspire and influence people, they trust their followers to get
things done, and use power only sparingly. Effective leaders, according to Larson and Lafasto [6] “(1)
establish a vision; (2) create change; and (3) unleash talent.” In a team with this kind of leader there is a
great opportunity for responsibility, technical supervision, and advancement.

In conclusion, effective teamwork are strongly tied together. Most of the characteristics of effective
teams are motivators or hygiene factors, and the remaining ones have a direct effect on it.

AGILE DEVELOPMENT AND TEAMWORK

In this section I’ll show how Agile development methods have the basic characteristics that make
effective teamwork possible.

A CLEAR, ELEVATING GOAL

Iterative and incremental development along with user collaboration plays a central role in keep-
ing the goal visible and clear. The usage of incremental development allows the developers and the
customer to define and work on smaller but clear goals. An important part of the increment is the defini-
tion of—often automated—acceptance tests. Their definition is what really makes the goal clear to the
team. The usage of, preferably short, iterations allow the team to have the feedback necessary to under-
stand if what they have done is what the customer expected. In fact, acceptance tests are very

The usage of(preferably short) iterations allow the team to have the feedback necessary to under-
stand if what they have done is what the customer expected. In fact, acceptance tests are very helpful,
but the experience of using the software gives the customer a better understanding of her needs. Often,
this leads to a refinement of the goal without a loss in clarity.

Making the goal elevating is not an easy thing. There are no sure recipes for an elevating goal. Cer-
tainly, having a customer who works closely with the team can be of great help. Such a customer can

Volume IV; Issue 1

February 2004

Motivation, Teamwork, And Agile Development

Giovanni Asproni

Page 13

continuously remind the team of how important the software is to her or to her company, or she can instill
a sense of urgency making it clear why the product absolutely must be ready by a certain date.

Making the goal elevating is not an easy thing. There are no sure recipes for that. Certainly, having a
customer who closely works with the team can be of great help. In fact, she can continuously remind the
(great) importance the software has for her or her company, or she can instill a sense of urgency making it
clear why the product must be absolutely ready for a certain date.

Some often successful techniques are to create a challenge by setting up tight, but achievable, dead-
lines or to give the team the possibility to learn new skills. In a project I’m currently involved, my team-
mates and I used both of these techniques to make it interesting. Up to now it has been a great success—
we and the customer are both satisfied.

A RESULTS-DRIVEN STRUCTURE

Agile teams are structured in order to deliver valuable software on time and on budget in a context of
frequent changes in requirements. An effective team structure has four necessary features [6]. First, there
are clear roles and accountabilities. For Agile development some of them are defined by means of the
rights that the customer and the development team have. The customer has the following rights:

• The right to an overall plan that defines what can be accomplished, when, and at what cost.
• The right to receive the maximum value for each iteration.
• The right to change or substitute priorities without incurring in exorbitant costs.
• The right to be informed about schedule changes so as to change scope
• The right to cancel the project and still have an useable system.
The developers have the following rights.
• The right to clear requirements with clear priorities.
• The right to always produce quality work.
• The right to request and receive help from their peers, their managers and the customer.
• The right to create estimates and to update them as the problem becomes better defined.
• The right to accept their responsibilities rather than having them assigned to them.
• The roles and accountabilities inside the development team depend on the methodology used.

Second, there is an effective communication system. Agile development puts an emphasis on face-to-
face communication—arguably the most effective communication channel between human beings; the
team members tend to be located close to each other, possibly in the same room—so the speed of com-
munication is optimized; the customer is encouraged to interact closely with the developers—so the feed-
back loop is shortened and the goal remains visible and clear.

Third, there is a way for monitoring individual performance and providing feedback. In Agile
development this is a consequence of the high level of interaction between the parties involved. If someone
is not doing his best, it becomes very clear to everybody very early on.

Fourth, all the judgments are fact-based. Agile development methods submit all activities and
products—including software—to an usefulness test: they must contribute in some way to the achievement
of the goal, otherwise they are dropped. The process is streamlined by executing only the activities that
simplify the work of the team. Documentation is written only if there are people willing to read it. Soft-
ware is kept as simple as possible, so it is easier to change. Future extensions will be examined when the
need will arise. Gold plating is loathed and avoided. Code quality is kept as high as possible. Finally,
technology is used only when necessary—very often using a whiteboard or CRC cards during a design

Volume IV; Issue 1

February 2004

Motivation, Teamwork, And Agile Development

Giovanni Asproni

Page 14

session is more effective than using the latest CASE tool. All these techniques allow the development team
to travel light and focus only on what matters for the achievement of the goal.

COMPETENT TEAM MEMBERS

Agile development methods need people with both technical and personal skills. In my opinion, the
latter are the ones that are more important, since at the end make the real difference. This goes against
the common belief that Agile methods require a higher proportion of expert developers in the team than
RSMs do. In fact, in my experience it is more important for Agile software developers to have the ability to
learn new skills, adapt to changing situations, and apply acquired skills in new ways than it is for them to
have strong technical skills. Furthermore, the high level of interaction required by Agile methods requires
people who can collaborate effectively with others—practices like collective design sessions, pair program-
ming, and collective code ownership could be impossible to implement otherwise.

UNIFIED COMMITMENT

Agile methods tend to involve the entire team in all phases of development. The customer is in close
contact with the team so that everyone can better understand the requirements. Design sessions make
extensive usage of techniques—such as CRC cards and whiteboards—that bring the whole team together
to discuss design and programming issues. All these things help greatly to foster unified commitment.

A COLLABORATIVE CLIMATE

Agile methods put a strong emphasis on collaboration. The first value of the Agile Manifesto clearly
states that individuals and their interactions are more valuable than processes and tools, and customer
collaboration is preferred to contract negotiation. The setting of a collaborative climate is one of the main
objectives of several Agile practices. The emphasis on face-to-face communication, shared or at least very
close office spaces, common design sessions, collective code ownership, customer collaboration, and incre-
mental and iterative development are all factors that help in creating a climate of trust and collaboration.

STANDARDS OF EXCELLENCE

The level of performance at which Agile methods aim is quite high: satisfy customers with continuous,
on time, and on budget delivery of valuable software and write technically excellent software—that is,
code that is self-documenting, fully tested, simple, and modifiable and has few and minor bugs. To make
standards easier to follow, Agile methods make use of some concrete practices such as iterative and
incremental development, extensive usage of testing, code refactoring, and coding standards, and keeping
the code simple and self-documenting. Some methods—for instance Extreme Programming—also use pair
programming and promote the concept of collective code ownership. These two techniques are a power-
ful incentive to keep up to the set standards, since every line of code can be, potentially, read and modi-
fied by any member of the team.

EXTERNAL SUPPORT AND RECOGNITION

Agile methods recognize explicitly the importance of external support. In fact one of the principles of
the Agile manifesto states “build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.” They recognize that without appropriate re-
sources software development is simply not possible. The allocation of office space, putting developers in
close with each other, the emphasis on face-to-face communication, the availability of appropriate devel-
opment tools, and close customer collaboration require a great deal of external support to be imple-
mented. As far as recognition is concerned, when it comes from an happy customer it has a powerful
effect. The simple act of showing appreciation for job well done is a very powerful motivator. It helps in
increasing the self-esteem of the developers and the level of trust between them and the customer. This in

Volume IV; Issue 1

February 2004

Motivation, Teamwork, And Agile Development

Giovanni Asproni

Page 15

turn leads to better communications and better software.

The usage of iterative and incremental development can be instrumental in increasing the external
support and recognition. A successful team that delivers early and continuous results is more likely to
receive the support it needs from all the stakeholders.

PRINCIPLED LEADERSHIP

The leadership theme is not dealt with directly in the Agile Manifesto and its principles. Generally, each
method has its own way to deal with it. There is a common theme that is clear from the literature: leader-
ship is important, and it must be a principled one [5] [11] [10]. A principled leadership is a natural fit for
Agile development, in fact is the most suitable for environments where change is the norm [5], and is the
only style compatible with the Agile values and principles. A command-and-control style wouldn’t be a
good fit for an environment in which “individuals and communications” are valued more than “processes
and tools.” [1].

CONCLUSION

I have shown why I believe Agile methods can be more productive and appealing for developers.
They leverage the most important factor for productivity and morale: motivation. The role of processes
and tools in this context is still very important, since they are used to streamline all the repetitive tasks,
letting the developers focus on what really matters: to satisfy the customer by producing valuable soft-
ware.

ACKNOWLEDGMENTS

I thank Mike Cohn for sharing his ideas with me, and for reviewing the article. I also thank my col-
leagues Alexander Fedotov, Rodrigo Fernandez, Federico Garcia-Diez, and Renato Mancuso for their help
and support.

ABOUT THE AUTHOR

Giovanni Asproni is an Italian software craftsman currently working as Senior Software Engineer for
the European Bioinformatics institute, near Cambridge, UK. He is a member of the AgileAlliance, the ACM,
and the IEEE Computer Society. He can be reached by e-mail at aspro@acm.org, or, through his website,
at http://www.giovanniasproni.com.

REFERENCES

[1] Beck, K., et al., The Agile Manifesto, http://www.Agilemanifesto.org

[2] Boehm B. W., Software Engineering Economics, Prentice Hall, 1981

[3] Cockburn, A., Agile Software Development, Addison Wesley, 2002

[4] Herzberg, F., One More Time: How Do You Motivate Employees?, Harvard Business Review, 1968

[5] Highsmith, J., Agile Software Development Ecosystems, Addison Wesley, 2002

[6] Larson, C., E., LaFasto, F., M., Teamwork: What must go right / what can go wrong, Sage Publications, 1989

[7] Maslow, A., Motivation and Personality, Addison Wesley, 1987

[8] Mayo, E., The Human Problems of an Industrial Civilization, Macmillan, 1933

[9] McClelland, D., The Achieving Society, The Free Press, 1967

[10] Peters, J., Waterman, R., H., In Search of Excellence: Lessons from America’s Best Run Companies, Harper, 1982

[11] Poppendiek, M., Poppendiek, T., Lean Software Development, Addison Wesley, 2003

[12] Taylor, F., W., The Principles of Scientific Management, Dover Publications, 1998

[13] Thomas, K., W., Intrinsic Motivation at Work: Building Energy & Commitment, Berrett-Koehler, 2003

[14] Weinberg, G., M., The Psychology of Computer Programming: Silver Anniversary Edition, Dorset House Pub-

Volume IV; Issue 1

February 2004

Motivation, Teamwork, And Agile Development

Giovanni Asproni

Page 16

Not everyone favours mix and match approaches to Agile methodologies. In some respects this atti-
tude is quite correct: there is no need for another methodology consisting of pre-selected best practices. In
other respects it is incorrect: existing methodologies are the result of such a mix and match effort, or alter-
natively advocate the selection of best practices as an ongoing process. Possibly of greater significance,
those truly Agile developers who decide how to do things as they proceed are, in effect, mixing and
matching from their own repertoire of techniques and best practices, on the fly. Some of the ideas and
techniques that get included into the mix may appear to have nothing to do with the development
process but instead address, say, the environment or the social aspects of a team. Anything that helps
delivery of working software is fair game for mix and match.

The question arises; how do we manage the mix and match process to arrive at an appropriate
development process? We can start to answer this question by considering what would make a develop-
ment process appropriate. There are three primary properties that such a process needs.

It must be Adequate --the processes must be capable of producing the required products and meeting
at least the most important subsidiary goals. A process that fails to detect and correct errors, for example,
would produce a product that falls short of the requirements. It must be Efficient – the total cost of enact-
ing the process should not be any higher than it needs to be. A process that permits change, but only at
great cost, is not efficient in cases where change is common and unavoidable. It must be Attainable – the
people available to enact the process must have the skills and ability to enact the process. A process that
relies on refactoring must include people that can refactor and perform all the techniques that enable
refactoring to be performed in safety.

It follows that any mix and match effort should produce a process that has these required properties.
We may judge how good the resultant process is by how well it fits the required qualities, and thus we
have a handle by which we can evaluate the mix and match efforts with a view to improvement. An
inadequate or unattainable process will result in failure unless corrective action is taken.

Of the processes that have these two required properties, we may compare their efficiency when
selecting the most appropriate.In this article I address the frequently neglected topic of Attainability and
what consequences this has when considering the jigsaw of best practices. Essentially, all processes contain
some parts that are defined. Even the most lightweight process, for example, may define when and
where source code is stored. A heavyweight process, on the other hand, may attempt to define every
possible action taken by any developer. The best way to ensure that a mix-and-match process is attain-
able is to pay attention to the gaps between the defined parts of the process.

All development processes have gaps. This is a distinction between development processes and pro-
duction processes. Unless a product can be described precisely, in advance, the process to build it cannot
be described precisely. These gaps in a development process are important, they enable the fixed parts of
process to flex to fit the product being developed. They allow the developer to choose how to bridge the
gap.An attainable process is one where the people available to enact the process can enact the pre-
defined parts of the process, and can also bridge the gaps between these predefined parts.

At the extreme Agile end of the agility spectrum, a process will be all gaps; there will be no pre-
defined parts to the process and the developer will have complete discretion over how the work is done.
At the other extreme of the spectrum, a process definer may attempt to eliminate the gaps entirely so
that the work can be done by the almost completely unskilled, emulating the factory production line.
However, software development is not a production environment; such efforts are doomed to failure.

How is it possible that the developer can make these decisions that are needed at the extreme Agile
end of the spectrum unsupported by the framework of a defined process? It is possible because the

Volume IV; Issue 1

February 2004

Mix and Match: Making Sense of the Best Practices Jigsaw

Paul Oldfield

Page 17

developer has his own internal framework, built up from a combination of experience and learned
knowledge.

It follows that when a developer does not have this internal framework, where it is insufficient, incom-
plete or poorly constructed, then the developer will need outside help to bridge the gaps and inadequacies
of his internal framework. It is also important to allow for internal frameworks that may be strong in
some areas and weak in others. This is common where experienced developers gain all their experience in
one environment.

There are various approaches toward providing support. The more Agile approaches have the sup-
port coming from team members that have the relevant experience, or from mentors brought in to aug-
ment the team. Where there is a large shortfall and not enough available experience to make do, then it
is time to add written, pre-defined elements of process.

Note that this is not the only reason to have written process; it may also be needed for coordination
purposes. When there are differences in approach, and these differences risk undermining the work done
by other people, then it is time to agree on elements of process to prevent conflict. Configuration manage-
ment, for example, is one area where there is a broad consensus on the need for some agreed process.

The dilemma that a defined process attempts to solve is that the people defining the process hold the
knowledge about process, while the people enacting the process are the people who hold the knowledge
about the situation that determines what process would be appropriate. The ideal toward which all truly
Agile approaches aspire is that the people enacting the process hold sufficient knowledge about process to
define the process.

Before discussing how knowledge of attainability helps us select appropriate process, I would like first
to take a step back and think about the development process. In many respects, this is like any other
product; the stakeholders have requirements that apply to process. A typical set of requirements may be
the 200 plus goals of CMM; with suitable re-wording to remove non-Agile assumptions, they may suit our
purpose nicely. Yet if these are the requirements, the process that actually gets enacted is the design. All
the Agile principles and practices that we apply to design of software may also apply, perhaps with some
modification, to design of process. As with all analogies, some parallels will be useful and instructive, some
will not. Defining process ‘just in time’ is a very useful parallel; ‘continuous integration’ and ‘refactoring’
are parallels with little immediately visible benefit. This probably stems from the difference that process
gets used and produces a product that never needs to be produced again, so that particular bit of process
never needs to get used again. Of course, something remarkably similar may get used again, and it is this
similarity that leads some people to believe there may be a possibility of designing process up front.

Let us consider the case where there is a shortage of experience, a lack of communication, and a lack
of trust in the developers to make the right decisions with regard to process. For inexperienced teams the
process needs to leave fewer gaps, and the process described needs to be more in terms of solutions to
problems. More feedback loops need to be placed in the process explicitly to detect those occasions where
the process seems to be inadequate, where the goals are not being met by the developers following the
defined process. Where problems are detected, a problem resolution strategy needs to be brought into
play, bringing the available expertise to bear on the problem. Yet the process still has gaps, the developer
still needs to use initiative.

Some people see these gaps as risks. A long series of process improvements may attempt to fill all the
gaps each time a developer’s initiative was misplaced. The resultant process would be so hidebound and
inflexible that it would have the developers doing precisely what was asked even when this was known

Volume IV; Issue 1

February 2004

Mix and Match: Making Sense of the Best Practices Jigsaw

Paul Oldfield

Page 18

to be the wrong thing to do. Here, any success would be in spite of the process, where developers ignore
the process and do what they think is right.

Now let us consider the case where there is considerable experience, good communication, and trust in
the developers. For those teams with a wealth of experience, the process can be defined initially as a set
of goals. The team as a whole, and individuals within the team, can choose how the process they enact
will meet the goals. Such a set of goals may be, for example, the aforementioned goals of CMM, suitably
modified. Here, the stakeholders are defining the requirements for the development process rather than
defining the design of the development process. We could attempt to fill these requirements by defining a
process up front, as in the example for inexperienced teams. Alternatively, we could design the process in
an Agile manner, much the same way as we would design a system in an Agile manner. A typical Agile
manner may be to do some initial work up front to establish a direction for the process, then to let the
detailed design of the process evolve as the needs dictate. The important thing is that the goals are met;
the flexibility that comes through fewer constraints on how the goals are met gives the opportunity for an
efficient solution to be found. Alternatively, it gives the opportunity for an inexperienced team to go
astray.

Finally, let us consider the extreme situation, where every member of the team is highly experienced.
Here the team may be trusted to establish their own list of goals and act on them without reference to
any defined process at all. In all cases, they know what is the right thing, and do it. Where they don’t
have the relevant information or expertise they will seek it out, of their own volition.

There are various opinions on how to characterise a situation and its suitability and need for agility.
DSDM, Appropriate Process, Crystal, and Boehm and Turner all have variants with a strong similarity; the
DSDM view was shown in the third issue of the Agile Times. In general, there is a scale of suitability for
agility, positions at one end being ideally suited for Agile approaches, positions toward the other end
requiring additional robustness of approach. It is useful to note that the different criteria have different
impacts on agility. Some, such as the degree of change (alternatively familiarity with business, familiarity
with technology) determine the need for agility, while others such as criticality determine the need for
robustness. One of the criteria considered by all these approaches is that of the skills and ability of the
available people. The more the team has in the way of appropriate skills, the greater is the degree of
agility that can be attained. Let us look at a few benchmark situations for an individual within a team.
At the outset, we all start as beginners, with no techniques available for use, no experience in using them,
and no ability to select appropriate techniques. Hopefully this situation has been improved before the
student takes his first employment, but a person at this stage needs firm guidance in a technique, and
mentoring to be able to use it at all. Effective use of the technique is still in the future.

With some experience, the apprentice developer gains the ability to use a few basic techniques with-
out guidance, to enact those parts of the life cycle in which he is permitted to participate. For each case he
will have a single technique available, and will be starting to learn a few wrinkles about how to apply it
in different situations. There is still no opportunity to select between alternate techniques, because there
are no known alternatives.

As the developer progresses through journeyman status, he will typically expand his competence to
different areas of the life cycle. He may also learn alternative techniques. He may use these all the time,
abandoning the old techniques, or he may start to choose one technique for one occasion, another for
others. The developer now has some capacity to select process; he has the first opportunity to become
Agile with respect to process. Eventually, the better journeyman developers may reach the stage of mas-
tery, and a depth of understanding that allows them to shortcut the evaluation and selection of tech

Volume IV; Issue 1

February 2004

Mix and Match: Making Sense of the Best Practices Jigsaw

Paul Oldfield

Page 19

niques, instead appearing to invent techniques precisely tailored to the situation as they go.

The learning of process can include learning a single technique for new areas of process, learning
additional techniques for existing areas of process, and learning how to choose between alternative
techniques where there are multiple known ways to achieve the current goal. To this, we may add
learning the goals that are important when designing process.

When considering how much process to design in advance, we need to consider what gaps the devel-
opers can cope with given their current abilities, what gaps they can cope with given the aid of their team
members, how to ensure this aid is given effectively, and what further support in learning about process
should be given.

. In considering attainability, consider also the possibility of changing the membership of the team to
enhance the overall attainability; say by adding people with relevant skills or buying in mentoring support.
Consider also the rate of churn, and the possibility of losing the expertise that is currently available and
that is built up as the project progresses.

One of the conclusions that is probably more startling to the traditional process mind-set is that as the
team matures, process improvement should take the form of removing constraints and permitting more
flexibility, rather than adding constraints to prevent recurrence of problems. A second conclusion that may
surprise some of the agile adherents is that mix and match happens anyway. If it is not done up front by
a process specialist, it will be done ‘at the code face’ by the experienced developer selecting techniques
suitable to deal with the immediate problems, or by a huddle of experienced people trying to find a way
to deal with the situation the project finds itself in.

A third conclusion is that if we are to shorten the time it takes to get individual team members to the
stage where they can make sensible decisions with respect to the elements of process that are appropri-
ate, then some time spent by them, explicitly considering what makes a process appropriate and how to
select appropriate techniques and approaches, might be a sensible option. And finally, unless the devel-
oper can choose between at least two ways to achieve his goal, he cannot be agile. Where one has no
choice, one cannot adapt to circumstances; one cannot be agile with respect to that goal.

ABOUT THE AUTHOR

Paul Oldfield is a member of the Appropriate Process Movement, a group who believe that the
recognition of what makes process appropriate and how to select appropriate techniques and ap-
proaches is a key skill in agile software development. These ideas are developed further on their site at
www.aptprocess.com. Paul can be reached at paul.oldfield@aptprocess.com.

Volume IV; Issue 1

February 2004

Mix and Match: Making Sense of the Best Practices Jigsaw

Paul Oldfield

Page 20

Volume IV; Issue 1

February 2004

Asking Effective Questions: Collaborative Problem-Solving

Tim Bacon

IF YOU’RE STUCK FOR ANSWERS, YOU NEED SOMEONE TO ASK YOU EFFECTIVE QUESTIONS

Do you know that sinking feeling that comes when you think you’ve bitten off more than you can
chew? There might be so many things to do that you can’t choose where to start, or there might be so
many hurdles to overcome that failure seems inevitable. Either way you feel paralysed by the sense of
impending doom. But don’t throw up your hands in despair! You probably already have the answers to
your problems: all you need is for someone to ask you some effective questions.

WHAT MAKES A QUESTION EFFECTIVE?

An effective question cuts through the mental logjam that we create when things go wrong. Answer-
ing it gives us an insight into our problems and stimulates our search for solutions. An effective question is
phrased in an open-ended fashion that does not suggest a particular answer and warrants a response of
more than just a few words. It usually starts with a “what” or a “how”, as “why” questions are easy to
misinterpret and can trigger a defensive response. Questions that are intimidating, repetitive, or rambling
are obviously ineffective. As an effective questioner it is important to listen without interrupting, waiting
respectfully for each answer and considering it when it arrives before giving an opinion or launching into
another question.

WHAT DO EFFECTIVE QUESTIONS ACHIEVE?

Effective questions clarify our goals and help to steer us from a state of confusion or aimlessness to-
ward a set of concrete actions. The dialogue that effective questioning initiates also increases the number
and quality of interactions within a team and makes it more effective. The following examples illustrate
some categories of question that I have found effective while working as a coach for a software develop-
ment team. These can be used in any sequence that makes sense for your team and your situation.

· “Where are we going?”
· “Where are we now?”
· “Have we been here before?”
· “Whose input are we missing?”
· “What steps ought we to take?”
· “How should we start?”
· “Which are the real obstacles?”
· “Are we ignoring something?”

“Where are we going?”

If we are totally floundering then effective questions will explore the motivation behind our current
activity and focus us on the desired outcome. Simply asking “What are we trying to achieve?” or “How will
we know when we’re done?” can be enough to get us back on track. Posing Dale Emery’s value question1

- “If you had that, what would that do for you?” – is particularly powerful, as it diverts attention away
from a single solution and back to the root of the problem.

“Where are we now?”

As programmers well know we can come to new insights by simply retracing the unsuccessful steps we
have taken. Asking “What seems to be causing the problem?” or “What have you tried so far?” can elicit
this kind of productive ‘aha!’ moment.

“Have we been here before?”

Problems will recur and we can often benefit from effective questions such as “What was the solution
last time?” or “What happened before when…?” These questions remind us of the likely effect in the

Page 21

Volume IV; Issue 1

February 2004

Asking Effective Questions

Tim Bacon

present of repeating actions that were taken in the past.

“Whose input are we missing?”

We can often benefit from connecting with people on different teams (or on our own team!) whose
strengths and achievements we are perhaps unaware of. Effective questions such as “Have you talked to
[her]? What did she say about…?” help to overcome this kind of limiting distance. Alternatively if there is a
discussion in which some people remain silent then asking them “So, what do you think?” at appropriate
intervals will encourage alternative points of view to be raised.

“What steps ought we to take?”

Sometimes we can see both where we are and where we want to get to. In this situation we need
effective questions that help to bridge the gap, such as “How could we achieve that when we are starting
from here?” If this prospect is too daunting however then it is more helpful to ask “Can we break this
down into smaller chunks?” or “What’s the first step we are able to take? Then what could we do next?”

“How should we start?”

If there are many tasks to be done then we need effective questions that identify our priorities. Asking
“If you could only do one thing today then what would you do?” or “What is most important right now?”
will help us to focus on the most urgent courses of action.

“Which are the real obstacles?”

Sometimes we can seem to hit a dead end where there is nothing more that we can possibly do or try.
When this happens we need effective questions that give us courage and allow us to determine which of
the perceived constraints are real and which are the product of our fear, miscomprehension, or haste. By
asking “What if this was true?” or “What if that were to happen?” we can create options where previously
none seemed to exist.

“Are we ignoring something?”

If a particular course of action seems too difficult or if we are prone to procrastination then we need
effective questions that challenge us to confront what we would otherwise ignore. These questions run the
risk of being provocative but if handled thoughtfully then asking “What are you going to do about this?” or
“How would you justify doing nothing about that?” can overcome many causes of inertia.

ASKING FOLLOW UP QUESTIONS

Sometimes the first answer we give or receive is too hasty or tentative. Effective follow up questions
explore whether a response has been fully thought through, for example “Can you explain how that
would work?” or “How can you be sure that…?” Follow up questions that require our understanding to be
confirmed can also be effective, such as “So if I heard you correctly then what you’re saying is...”

SUMMARY

Software development is a difficult activity and as such it is easy to get bogged down in its problems.
But we can get unstuck by asking effective questions that facilitate the discovery of solutions. Effective
questioning can also benefit software development teams by promoting discussion, co-operation and
collaboration.

ABOUT THE AUTHOR

Tim Bacon works as a consultant for ThoughtWorks Inc in the United Kingdom. The views expressed
are his own and are not necessarily those of his employer. You can reach Tim at
tbacon@thoughtworks.com.

Page 22

Self-organizing teams are undiscovered country for most software development professionals. What
does it mean to say Agile teams are self-organizing? If a team is truly self-organizing, can we lay off all
the managers? How does a shift to Agile methods shape the roles of team members and managers?
What can team members and leaders expect when working with Agile teams on the way to self-organi-
zation? Each of the questions above deserves a complete examination that is more in depth than we have
room for in this article. However, here are some short answers.

When we say an Agile team is self-organizing, we mean that a group of peers has assembled for the
purpose of bringing a software development project to completion using one or more of the Agile meth-
odologies. The team members share a goal and a common belief that their work is interdependent and
collaboration is the best way to accomplish their goal. Empowered team members’ reduce their depen-
dency on management as they accept accountability, and the team structure places ownership and
control close to the core of the work. Rather than having a manager with responsibility for planning,
managing and controlling the work, the team members share increasing responsibility for managing their
own work and also share responsibility for problem-solving and continuous improvement of their work
processes.

If the team is assuming responsibility for managing the work, can we get rid of the managers? In short,
no. Managers are still needed. Not so much for their planning and controlling ability, but for the important
job of interfacing on the team’s behalf with the rest of the organization. In addition, a team self-organizes
over time and usually follows a stepped approach to assuming responsibility for self-managing. The
manager plays several important roles, including the incremental letting go of management tasks as the
team becomes more adept at performing them.

Agile methods inherently drive the team in a self-organizing direction. As alluded to above, this causes
a shift in the roles of managers from planning, controlling, directing, and managing to new roles like
building trust, facilitating and supporting team decisions, expanding team capabilities, anticipating and
influencing change. Managers become facilitators, liaisons and network builders, boundary managers,
resource allocaters, team champions and advocates, and in most cases, still have responsibility to watch the
budget. Team members’ roles change too as the group takes on increasing ownership of work processes
and Agile practices. They become decision makers, conflict managers, innovators and conveners of sponta-
neous standup meetings that can bring production to a halt!

As with any organizational system change, the transition to self-organizing teams can be daunting –
rocky and confusing. However, the process can be made easier if team members and leaders learn the
fundamentals of the ‘care and feeding’ of teams. In particular, Agile practitioners reap benefits for their
project by paying attention to three aspects of team dynamics:

• Tracking the team’s progress toward self-organization
• Giving the team a good start
• Applying practices to encourage effective team dynamics
• Choosing strategies to move the team from the predictable impasses into higher productivity,
satisfaction and success

TRACKING SELF-ORGANIZING TEAMS

The secret to successful teamwork lies in understanding, and then taking action based on, two factors:
1) the dynamics of team growth and development, and 2) the conditions that foster effectfacing teams
change over time as the team moves through the well-documented stages of group development, first
proposed by B.W. Tuckman and validated through research and empirical observation for nearly 40
years.1 In each stage a team encounters typical team issues and interacts with six elements of teamwork:

Volume IV; Issue 1

February 2004

Team Agility: Exploring Self-Organizing Software Teams

Diana Larsen

Page 23

performance, working agreements, shared responsibility, sense of purpose, communication and commit-
ment. These elements evolve through the stages of development as the team learns to perform together.

Note that the stages are not stair steps in the sense that teams start and proceed in an orderly, linear,
predictable manner onward and upward until they achieve their top performance level. The stages are
stair steps more in the Shirley Temple/Bill Robinson tap-dancing mode (for a visual example, see the 1935
movie, The Little Colonel): two steps upward, one step down, three steps up, five steps back down, con-
tinuing until they reached the top. Teams start at the first stage often going up and down a number of
times and some never settle permanently at the top. Internal issues and external forces will affect every
team’s developmental progress. These forces may include a large-scale organizational change, lack of
supporting organizational systems, losing or gaining team members, the nature of the tasks or goals,
break-up and reforming of teams, and others. Sometimes the steps through the stages seem more like a
print by Escher, circling around and going nowhere in particular.

In addition, when dealing with teams, we must remember that they are rarely in a static state, but
more likely to be moving along the development continuum and at any given time may exhibit character-
istics associated with more than one stage. Through informed observation, team leaders and members can
distinguish whether the team is making progress or has hit an impasse. That’s how you know when your
team could use some immediate help. Team leaders can learn about specific challenges to expect along
the way, how teams can get sidetracked, how to recognize the sidetracks and strategies for re-direction.

GETTING THE TEAM STARTED RIGHT

As teams initially form and begin working together in the forming stage, individual team members
often have a sensation similar to being the new kid in class. They are not fully committed to working with
others yet want to feel included, or rather want not to feel excluded, by the rest of the group. Individual
team members get busy gathering the information they need to orient themselves to the new Agile
practices, to feel safe in the new territory and to produce software to their personal standards. In this stage
the team may accomplish less concerning its task goals than managers would like. With the right support,
most teams can move more quickly through this phase.

Both team members and team leaders take on new roles when Agile teams become self-organizing.
The roles of team leaders change from traditional planning, controlling, directing responsibilities to ones
that require being a facilitative leader, team advocate, resource allocator, boundary manager, and gener-
ally increased savvy about managing the organizational changes. Most professionals who have had lead-
ership roles before have used some of these skills. Leading a self-organizing Agile team requires that the
degree of focus shifts more toward their use. Subtle changes also occur as the role of individual contributor
changes to the role of self-organizing team member. A greater degree of attention is needed to the well-
being and effectiveness of the team as a whole, as well as stepping up to the accountability and sense of
empowerment to make as a team decisions formerly handed down from management.

ENCOURAGING EFFECTIVE TEAM DYNAMICS

An understanding of the role of trust and communication in teamwork is fundamental for teams to
develop and mature into truly self-organizing status. This means team members take more notice of
process dynamics – a shift that some developers may consider a distraction from the real work. However,
in addition to transmitting information and data, communication also serves a number of other purposes in
developing a team that can develop efficiently and effectively. Skilled team communication serves a
hierarchy of needs. It builds the foundation of trust so essential to efficiency. The presence of trust in work-
ing relationships translates into the rational commitment to the work of the team as well as the emotional
commitment leading to loyalty to one’s colleagues – the glue that holds the team together. That glue

Volume IV; Issue 1

February 2004

Team Agility: Exploring Self-Organizing Software Teams

Diana Larsen

Page 24

shows its importance when disagreements and inevitable conflicts in opinion arise. A mutual
acknowledgement of shared commitment to the work and to each other all allows team members to
work toward solutions to conflict constructively without avoidance. The fear of uncomfortable angry,
distrustful confrontations is lessened or absent. As a team develops the ability to surface and work through
conflicts, its capacity for innovation and creative problem-solving skyrockets, leading inexorably to full self-
organization, high performance and true agility.

For example, the promulgating the adoption following six communication tools are effective in provid-
ing a work environment that generates trust:

1. Credibility: Be consistent and reliable, follow-through
2. Tune In: Show the other person you listened
3. Self-disclose: Lift your “Mask” (even a little helps)
4. Empathy: Put yourself in the other person’s “shoes”
5. Stretch: Express interest in the team and team mates
6. Communicate: Seek and give effective feedback

KEEPING THE TEAM MOVING IN THE RIGHT DIRECTION

Depending on their stage of development, teams encounter predictable challenges that can sidetrack
attention and affect performance. Addressing those challenges and ensuring the team is developing
appropriate quality and interaction skills along the way, endows the team with a greater ability to stay
on course toward the goal. For example, after the team has worked together enough to understand
each other’s commitment to getting the job done, they may be willing to acknowledge more difference of
opinion and surface more conflicts. On the way to self-organizing, during this stage team members test the
extent of their power and control over their work processes. A wise manager will expect the increased
tension and stress this can cause, recognize it as progress in team development and be ready to support
team members in getting the information and support they need from other parts of the organization. In
addition, tracking and celebrating the early small successes promotes team cohesion and ramps up mo-
mentum toward results for the customer.

The potential rewards of Agile self-organizing teams are great; however, results are not achieved
without the investment of focus by team leaders and members – focus on the skills to be honed at each
stage of the team’s development. Ask yourself, “When I think of all my experiences as a part of a team,
whether as a leader or member of the team, what stands out for me as the highpoints? When have I
been a part of a team (or teams) that really clicked together and accomplished its purposes?” When you
have the answer to that question firmly in mind, consider the factors that led to your sense of success.
What can you do to replicate those conditions for your next team? How can you involve others on the
team in creating a body of knowledge about team success? (I suggest project retrospectives as one tech-
nique.) Take the time to learn more about what makes Agile teams move to self-organized, high perfor-
mance. Your projects and your teams will benefit.

AUTHOR BIO

Also known as the “Industrial XP Change Goddess,” Diana Larsen is a senior organizational develop-
ment and change management consultant with Industrial Logic Inc. (www.industriallogic.com). A specialist
in the “I” of Industrial XP (www.industrialxp.org), Diana conducts readiness assessments and facilitates
processes (including project chartering and retrospectives) that support and sustain change initiatives,
attain effective team performance and retain organizational learning. Diana is a certified Scrum Master,
writes articles on XP management and organizational change, and frequently speaks at Agile/XP confer-
ences. Reach Diana at www.industriallogic.com, diana@industriallogic.com, or 503-288-3550.

Volume IV; Issue 1

February 2004

Team Agility: Exploring Self-Organizing Software Teams

Diana Larsen

Page 25

There are a number of ways to tell that an idea is truly revolutionary: it is simple, elegant and power-
ful; it combines existing techniques in a novel way; it changes the way we do things; it has some kind of
strange, unexpected impact; and most importantly, when you see it, you ask yourself, “Why didn’t I think
of that?”

In 2001, a survey of Extreme Programming practitioners revealed that Acceptance Testing (or Cus-
tomer Testing, as we now call it) was one of the three most difficult practices to implement effectively.
Another survey indicated that a majority of respondents did not automate their acceptance tests. I share
this perspective, having never been on a project that has done Customer Testing well. There have been
two underlying problems: end-to end tests are expensive to maintain over the long term and customers do
not know how to write executable tests themselves. Since the customers do not write their own tests, the
programmers have to do it, which takes time and elevates the risk of incorrectly translating the customer’s
requirements into code. When the programmers do write the tests, they usually test the application from
end to end. As the application evolves, this growing collection of tests becomes increasingly costly to main-
tain. These two problems together have encouraged me to be much less vigilant than I could be in turning
the Customer Testing dial up to 11.

And then one of those revolutionary ideas appeared. Ward Cunningham launched fit.c2.com, a site
devoted to his new testing framework, FIT. In his own words, FIT is about “tests people can read.”
Ward’snew tool makes it possible to turn documents into executable tests by focusing on tables. Many

business processes areepresented in
documentation by decision tables.
Commercial shipping rules are
represented by tables. Employee
source reductcion amounts are
represented by tables. What better
resource do we have that these
tables when it comes time to verify
whether we have correctly imple-
mented a business process, or a
shipping module, or a source
deduction calculator? With FIT, we
write code to interpret these tables,
then pass our customer’s documents
through the FIT test runner. Table
cells change color: green means
success, red means failure, and
yellow means that something went
wrong. Once the table-interpreting
code is in place, which FIT calls a
fixture, customers can add their
own tests by adding rows to their
tables. With FIT, the customer can
finally own their tests.

In 2003, Diaspar Software
joined the ranks of companies using
FIT to enable their customers

Volume IV; Issue 1

February 2004

Write Tests Customers Can Read With FIT And FitNesse

J. B. Rainsberger

Page 26

to write their own tests. The results have been very positive so far: on a project with 500 programmer
tests, our customer wrote over a dozen tests of their own, verifying over 200 individual cells of data.
What’s more, our customer was able to add these tests entirely without help from the programmers.This
was especially useful for late-changing and misunderstood requirements. One business rule started out
with 19 individual test cases, each its own row of a FIT fixture. Our customer identified two entire special
cases they had neglected to tell us during our initial story conversation. In past projects, the customer would
have informed us of the problem then we would have spent a few hours reviewing the previously-stated
requirements, understanding the new requirements, then writing additional tests to determine whether
the feature already handles these new special cases. This time, however, the customer simply added four
rows to the table, executed the tests, saw a sea of green and sent a polite e-mail saying, “Just to let you
know that we missed a couple of special cases, but we tried them out and they already work, so don’t
worry about it.” This is just one way that FIT has saved us time and effort in our work.

Not long after FIT appeared on the testing landscape, Bob Martin of ObjectMentor began to use it,
and quickly grew tired of its command-line test runner. He wanted to execute FIT tests he had already
written using Wiki, the open web-based collaboration platform that has itself transformed the way
many organizations share project information. He wanted to execute his FIT tests “with finesse,” and so
became involved in developing FitNesse, a standalone Wiki capable of executing FIT tests.

FitNesse is simple: you can download it, start it and begin using it in seconds. Instead of clipping text
descriptions of acceptance tests to story cards, you can write each story as a Wiki page, then annotate the
story with its customer tests! It is this very feature that has allowed Diaspar Software to amplify the
effectiveness of a customer who cannot remain on site. The mobile customer can visit the Wiki from

Volume IV; Issue 1

February 2004

Write Tests Customers Can Read With FIT And FitNesse

J. B. Rainsberger

Page 27

anywhere, check up on us by executing the tests, and add their own tests by navigating to the story’s Wiki
page. While it is not a substitute for the on-site customer, it compensates better for the lack of an on-site
customer compared to other techniques we have tried in the past.

While we can go on extolling the virtues of FIT and FitNesse, we do need to mention that these tools
do not eliminate the need for programmer involvement in writing customer tests. You still need program-
mers to write the fixture code that sits behind these FIT tables. Without these fixtures, tables are just tables.
It is only when you add fixture code that these tables become tests.

There is a certain learning curve as programmers try to turn their customer’s data into a row fixture, a
column fixture or an action fixture. Also, since tables contain text, fixture code needs to parse text into
objects and format objects back into text. The good news is that if your application has any kind of user
interface, the programmers will already need to parse text and format objects, so your FIT fixtures and
your application can share those services. These fixtures sit just under the look-and-feel part of your user
interface, but use the logical part of your user interface, killing two birds with one stone. First, FIT helps you
test the most important parts of your user interface: navigating from feature to feature, interpreting user
requests and choosing the right response. Next, FIT tests avoid the common pitfalls of end-to-end tests:
they do not depend on your application’s look and feel, so changing the position of controls on the screen
or the text on your buttons does not cause false failures in your tests. This is one area in which FIT has had
an unexpected impact on application design: we have noticed a cleaner separation between presentation
services related to technology (web interface? desktop graphical interface? XML messaging interface?)
and presentation services related to the application (currency, number and date/time formats), resulting in
even lower coupling and higher cohesion than we already get from practising Test-Driven Design. In
addition to enabling our customers to own their tests, FIT has made us better at designing user interfaces.
We wonder what FIT is going to teach us next!

Ward Cunningham noticed that his customers had all these documents containing tables. He
noticed that he was writing software to behave according to those tables. He thought, “Wouldn’t it be
great if we could just execute those tables somehow?” And at that moment FIT was born. Such a simple
idea – one that holds the promise of helping customers truly own their tests. One that paves the way to
effective customer testing, arguably the most important of the Extreme Programming practices. With FIT
in our toolbox, we are a more successful organization. Why didn’t I think of that?

ABOUT THE AUTHOR

J. B. Rainsberger is the founder of Diaspar Software Services, a Toronto-based Agile software firm.
He participates actively in the Toronto Agile and XP community as a speaker, programmer, writer and
trainer. His book, “Programmer Testing with JUnit: Recipes for Better Java Code” is due to be released in
May 2004 by Manning publications.

Volume IV; Issue 1

February 2004

Write Tests Customers Can Read With FIT And FitNesse

J. B. Rainsberger

Page 28

INTRODUCTION

The idea of unit testing seems to always evoke a strong reaction in people. For those that buy into the
concept, they have unanimously stated that good unit tests are difficult to write, and some question
whether the tests they have written were really worth it while others rave about their effectiveness. On
the other hand, there is also a large community that guffaws at the idea of unit testing, especially the
concept that “the code is good when it passes the unit tests.” When all the hoopla dies down, unit testing
may one day be relegated to the dusty shelf of “yet another programmer too If this fate is to be changed,
unit testing has to be embraced by both the community and the tool developers. The next version of
Microsoft’s Visual Studio will include tools to automate refactoring. It seems obvious to me that tools that
automate unit test generation would not only address some of the issues concerning maintenance and
cost, but would also introduce the concept to a much wider audience.

However, to achieve this acceptance, unit testing must be formalized so that it becomes a real engi-
neering discipline rather than an ad hoc approach that relies on the dubious capabilities of the program-
mer. After all, the unit test is supposed to test the code that the programmer writes. If the programmer
writes bad code to begin with, how can you expect anything of better quality in the tests? Of even more
concern is the concept that the unit test should be written first, before the code that is to be tested. To a
certain extent, this implies that not only does the programmer have to consider what the code will do, he/
she has to consider how the code is designed. Both drive the interface. This is why many people balk at
the idea of writing the unit test first—it places them in the uncomfortable position of having to do up front
design work without consciously recognizing that this what they are doing.

So, we are faced with a double edged sword. First, there is no formal unit test engineering discipline
established in the community that provides a guide to the programmer and works to ensure some level of
unit test quality. Second, the prerequisite that the design has to be somewhat formalized before any tests
can be written causes difficulty for many programmers because they either don’t have formal design
experience or simply don’t like up front design work. Aggravating this situation is the idea that up front
design work can be replaced under the guise of “refactoring”.

In order to blunt this sword, two things are needed—a formalization of unit testing by establishing unit
test patterns, and the early adoption of object oriented design patterns in the developing application to
specifically target the needs of unit testing. This article will paint a picture of this two pronged solution with
some very large brush strokes. The intention is to whet your appetite and hopefully begin a dialog
amongst yourselves that will lead to a more formal unit test engineering process, similar to object oriented
design, design patterns, and refactoring.

As you read this article, keep in mind that one of the goals is a tool suite that can be used to automati-
cally generate unit tests, both as a reverse and forward engineering process. With the latter, it should be
possible to generate the method stubs for the code under test. After all, one of the benefits of unit testing is
that it provides the implementer with some documentation as to the expected structure and behavior of
the code under test. Also, to keep this article in the general reader category, there are no code examples.

PATTERNS

The patterns that I have identified so far can be loosely categorized as:

• pass/fail patterns
• collection management patterns
• data driven patterns
• performance patterns

Volume IV; Issue 1

February 2004
Unit Test Patterns

Marc Clifton

Page 29

The Simple-Test Pattern

The Code-Path Pattern

• process patterns
• simulation patterns
• multithreading patterns
• stress test patterns

Again, let me emphasize that these are broad brush strokes. From my research, this appears to be
quite new territory.
PASS/FAIL PATTERNS

These patterns are your first line of defense (or attack, depending on your perspective) to guarantee
good code. But be warned, they are deceptive in what they tell you about the code.

The Simple-Test Pattern

Pass/fail unit tests are the simplest
pattern and the pattern that most con-
cerns me regarding the effectiveness of a
unit test. When a unit test passes a simple
test, all it does is tell me that the code
under test will work if I give it exactly the
same input as the unit test. A unit test that
exercises an error trap is similar—it only
tells me that, given the same condition as
the unit test, the code will correctly trap
the error. In both cases, I have no confi-
dence that the code will work correctly
with any other set of conditions, nor that it
will correctly trap errors under any other
error conditions. This really just basic logic.
However, on these grounds you can hear
a lot of people shouting “it passed!” as all
the nodes on the unit test tree turn green.

The Code-Path Pattern

The Simple-Test pattern typifies what I call “black box testing.” Without inspecting the code, that’s
about all you can do—write educated guesses as to what the code under test might encounter, both as
success cases and failure cases, and test for those guesses.

A better test ensures that at least all the code paths are exercised. This is part of “white box testing”—
knowing the inside workings of the code being tested. Here the priority is not to set up the conditions to
test for pass/fail, but rather to set up conditions that test the code paths. The results are then compared to
the expected output for the given code path. But now we have a problem—how can you do white box
testing (testing the code paths) when the code hasn’t been written? Here we are immediately faced with
the “design before you code” edge of that sword. The discipline here, and the benefit of unit testing by
enforcing some up front design, is that the unit test can test for code paths that the implementer may not
typically consider. Furthermore, the unit test documents precisely what the code path is expected to do.
Conversely, discipline is needed during implementation when it is discovered.

The Parameter-Range Pattern

Still, the above test, while improving on the Simple-Test pattern, does nothing to convince me that the
code handles a variety of pass/fail conditions. To do this, the code should be tested using a range of condi

Volume IV; Issue 1

February 2004
Unit Test Patterns

Marc Clifton

Page 30

tions. The Parameter-Range pattern does this by feeding the Code-Path pattern with more than a single
parameter set. Now I am finally beginning to have confidence that the code under test can actually work
in a variety of environments and conditions.

DATA DRIVEN TEST PATTERNS

Constructing Parameter-Range unit tests is doable for certain kinds of testing, but it becomes inefficient
and complicated to test at a piece of code with a complex set of permutations generated by the unit test
itself. The data driven test patterns reduce this complexity by separating the test data from the test. The
test data can now be generated (which in itself might be a time consuming task) and modified indepen-
dent of the test.

The Simple-Test-Data Pattern
The Parameter-Range Pattern

The Simple-Test-Data Pattern

The Data-Transformation-Test Pattern

In the simplest case, a set of test data is
iterated through to test the code and a
straightforward result (either pass or fail) is
expected. Computing the result can be done
in the unit test itself or can be supplied. In the
simplest case, a set of test data ishrough to
test the code and a straightforward result
(either pass or fail) is expected. Computing
the result can be done in the unit test itself or
can be supplied with the data set. Variances
in the result are not permitted. Examples of
this kind of of Simple-Test-Data pattern
include checksum calculations, mathematical
algorithms, and simple business math calcula-
tions. More complex examplesinclude encryp-
tion algorithms and lossless encoding or
compression algorithms.

The Data-Transformation-Test Pattern

The Data-Transformation-Test pattern
works with data in which a qualitative
measure of the result must be performed. This
is typically applied to transformation algo-
rithms such as lossy compression. In this case,
for example, the unit test might want to
measure the performance of the algorithm
with regard to the compression rate vs. the
data loss. The unit test may also need to verify that the data can be translated back into something that
resembles the input data within some tolerance. There are other applications for this kind of unit test—a
rounding algorithm that favors the merchant rather than the customer is a simple example. Another
example is precision. Precision occurs frequently in business—the calculation of taxes, interesting, percent-
ages, etc., all of which ultimately must be rounded to the penny or dollar but can have dramatic effects on
the resulting value if precision is not managed correctly throughout the calculation.

Data Transaction Patterns

Data transaction patterns are a start at embracing the issues of data persistence and communication.

Volume IV; Issue 1

February 2004
Unit Test Patterns

Marc Clifton

Page 31

More on this topic is discussed under “Simulation Patterns.” Also, these patterns intentionally omit stress
testing, for example, loading on the server. This will be discussed under “Stress-Test Patterns.”

The Simple-Data-I/O Pattern

This is a simple data transaction pattern, doing little more than verifying the read/write functions of the
service. It may be coupled with the Simple-Test-Data pattern so that a set of data can be handed to the
service and read back, making the transaction tests a little bit more robust.
The Constraint-Data Pattern

The Constraint-Data pattern adds robustness to the
Simple-Data-I/O pattern by testing more aspects of the
service and any rules that the service may incorporate.
Constraints typically include:

• can be null
• must be unique
• default value
• foreign key relationship
• cascade on update
• cascade on delete

As the diagram illustrates, these constraints are
modeled after those typically found in a database
service and are “write” oriented. This unit test is really
oriented in verifying the service implementation itself,
whether a DB schema, web service, or other model
that uses constraints to improve the integrity of the
data.

The Rollback Pattern

The rollback pattern is an adjunct to the other
transaction testing patterns. While unit tests are sup-
posed to be executed without regard to order, this
poses a problem when working with a database or
other persistent storage service. One unit test may alter
the dataset causing another unit test to inappropriately
fail. Most transactional unit tests should incorporate the
ability to rollback the dataset to a known state. This
may also require setting the dataset into a known state
at the beginning of the unit test. For performance
reasons, it is probably better to configure the dataset to
a known state at the beginning of the test suite rather
than in each test and use the service’s rollback function
to restore that state for each test (assuming the service
provides rollback capability).

COLLECTION MANAGEMENT PATTERNS

A lot of what applications do is manage collections
of information. While there are a variety of collections

The Simple-Data-I/O Pattern

The Constraint Pattern

The Rollback Pattern

The Collection-Order Pattern

Volume IV; Issue 1

February 2004
Unit Test Patterns

Marc Clifton

Page 32

available to the programmer, it is important to verify (and thus document) that the code is using the
correct collection. This affects ordering and constraints.

The Collection-Order Pattern

This is a simple pattern that verifies the expected results when given an unordered list. The test vali-
dates that the result is as expected:

• unordered
• ordered
• same sequence as input
This gives the implementer crucial information on how the container is expected to manage the collection.

The Enumeration Pattern

This pattern verifies issues of enumeration, or collection traversal. For example, a collection may need
to be traversed forwards and backwards. This is an important test to perform when collections are non-
linear, for example a collection of tree nodes. Edge conditions are also important to test—what happens
when the collection is enumerated past hte first or last item in the collection?

The Collection-Constraint Pattern

This pattern verifies that the container handles constraint violations: null values and inserting duplicate
keys. This pattern typically applies only to key-value pair collections.

The Collection-Indexing Pattern

The indexing tests verify and document the indexing methods that the collection container must sup-
port—by index and/or by key. In addition, they verify that update and delete transactions that utilize
indexing are working properly and are protected against missing indexes.

RFORMANCE PATTERNS

Unit testing should not just be concerned with function but also with form. How efficiently does the
code under test perform its function? How fast? How much memory does it use? Does it trade off data
insertion for data retrieval effectively? Does it free up resources correctly? These are all things that are
under the purview of unit testing. By including performance patterns in the unit test, the implementer has
a goal to reach, which results in better code, a better application, and a happier customer.

The Enumeration Pattern The Collection-Constraint Pattern

The Collection-Indexing Pattern

Volume IV; Issue 1

February 2004
Unit Test Patterns

Marc Clifton

Page 33

The Performance-Test Pattern

The basic types of performance that can be measured are:

• Memory usage (physical, cache, virtual)
• Resource (handle) utilization
• Disk utilization (physical, cache)
• Algorithm Performance (insertion, retrieval, indexing, and operation)

Note that some languages and operating systems make this information difficult to retrieve. For example,
the C# language with its garbage collection is rather difficult to work with in regards to measuring
memory utilization. Also, in order to achieve meaningful metrics, this pattern must often be used in con-
junction with the Simple-Test-Data pattern so that the metric can measure an entire dataset. Note that
just-in-time compilation makes performance measurements difficult, as do environments that are natu-
rally unstable, most notably networks. I discuss the issue of performance and memory instrumentation in
my fourth article in a series on advanced unit testing found at http://www.codeproject.com/csharp/
autp4.asp.

PROCESS PATTERNS

Unit testing is intended to test, well, units...the basic functions of the application. It can be argued that
testing processes should be relegated to the acceptance test procedures, however I don’t buy into this
argument. A process is just a different type of unit. Testing processes with a unit tester provide the same
advantages as other unit testing—it documents the way the process is intended to work and the unit
tester can aid the implementer

The Performance-Test Pattern

The Process-Sequence Pattern

The Process-Rule Pattern

The Process-Sequence Pattern

This pattern verifies the expected
behavior when the code is performed in
sequence, and it validates that problems
when code is executed out of sequence are
properly trapped. The Process-Sequence
pattern also applies to the Data-step,
improving performance and maintainabil-
ity of the unit test structure.

The Process-State Pattern

The concept of state cannot be
decoupled from that of process. The whole
point of managing state is so that the
process can transition smoothly from one
state to another, performing any desired
activity. Especially in “stateless” systems
such as web applications, the concept of
state (as in the state of the session) is
important to test. To accomplish this with-
out a complicated client-server setup and
manual actions requires a unit tester that
can understand states and allowable
transitions and possibly also work with

Volume IV; Issue 1

February 2004
Unit Test Patterns

Marc Clifton

Page 34

Mock-Object Pattern

The Service-Simulation Pattern

This test is similar to the Code-Path pattern—the intention is to verify each business rule in the system.
To implement such a test, business rules really need to be properly decoupled from surrounding code—
they cannot be embedded in the presentation or data access layers. As I state elsewhere, this is simply
good coding, but I’m constantly amazed at how much code I come across that violates these simple guide-
lines, resulting in code that is very difficult to test in discrete units. Note that here is another benefit of unit
testing—it enforces a high level of modularity and decoupling.

SIMULATION PATTERNS

Data transactions are difficult to test because they often require a preset configuration, an open
connection, and/or an online device (to name a few). Mock objects can come to the rescue by simulating
the database, web service, user event, connection, and/or hardware with which the code is transacting.
Mock objects also have the ability to create failure conditions that are very difficult to reproduce in the real
world—a lossy connection, a slow server, a failed network hub, etc. However, to properly use mock objects
the code must make use of certain factory patterns to instantiate the correct instance—either the real
thing or the simulation. All too often I have seen code that creates a database connection and fires off an
SQL statement to a database, all embedded in the presentation or business layer! This kind of code
makes it impossible to simulate without all the supporting systems—a preconfigured database, a data-
base server, a connection to the database, etc. Furthermore, testing the result of the data transaction
requires another transaction, creating another failure point. As much as possible, a unit test should not in
itself be subject to failures outside of the code it is trying to test.

Mock-Object Pattern
In order to properly use mock objects, a factory pattern

must be used to instantiate the service connection, and a
base class must be used so that all interactions with the
service can be managed using virtual methods. (Yes, alter-
natively, Aspect Oriented Programming practices can be
used to establish a pointcut, but AOP is not available in
many languages). The basic model is as shown in this
diagram. To achieve this construct, a certain amount of
foresight and discipline is needed in the coding process.
Classes need to be abstracted, objects must be constructed
in factories rather than directly instantiated in code, fa-
cades and bridges need to be used to support abstraction,
and data transactions need to be extracted from the
presentation and business layers. These are good program-
ming practices to begin with and result in a more flexible
and modular implementation. The flexibility to simulate
and test complicated transactions and failure conditions
gains a further advantage to the programmer when mock
objects are used.

The Service-Simulation Pattern

This test simulates the connection and I/O methods of a
service. In addition to simulating an existing service, this
pattern is useful when developing large applications in
which functional pieces are yet to be implemented.

Volume IV; Issue 1

February 2004
Unit Test Patterns

Marc Clifton

Page 35

The Bit-Error-Simulation Pattern

I have only used this pattern in limited applications such as simulating bit errors induced by rain-fade in
satellite communications. However, it is important to at least consider where errors are going to be
handled in the data stream—are they handled by the transport layer or by higher level code? If you’re
writing a transport layer, then this is a very relevant test pattern.

The Component-Simulation Pattern

In this pattern, the mock object simulates a component failure, such as a network cable, hub, or other
device. After a suitable time, the mock object can do a variety of things:

• throw an exception
• return incomplete or completely missing data
• return a “timeout” error

Again, this unit test documents that the code under test needs to handle these conditions.

 MULTITHREADING PATTERNS

Unit testing multithreaded applications is
probably one of the most difficult things to
do because you have to set up a condition
that by its very nature is intended to be
asynchronous and therefore non-determinis-
tic. This topic is probably a major article in
itself, so I will provide only a very generic
pattern here. Furthermore, to perform many
threading tests correctly, the unit tester
application must itself execute tests as
separate threads so that the unit tester isn’t
disabled when one thread ends up in a wait
state.

The Signalled Pattern

This test verifies that a worker thread
eventually signals the main thread or an-
other worker thread, which then completes
its task. This may be dependent on other
services (another good use of mock objects)
and the data on which both threads are
opearting, thus involvingother test patterns
as well.

The Deadlock-Resolution Pattern

This test, which is probably very compli-
cated to establish because it requires a very
thorough understanding of the worker
threads, verifies that deadlocks are resolved.

The Deadlock-Resolution

The Bit-Error-Simulation Pattern

The Component-Simulation Pattern

The Signalled Pattern

Volume IV; Issue 1

February 2004
Unit Test Patterns

Marc Clifton

Page 36

The Loading-Test PatternThe Resource-Stress-Test Pattern

The Bulk-Data-Stress-Test Pattern

STRESS-TEST PATTERNS

Most applications are tested in ideal environments—the programmer is using a fast machine with little
network traffic, using small datasets. The real world is very different. Before something completely
breaks, the application may suffer degradation and respond poorly or with errors to the user. Unit tests
that verify the code’s performance under stress should be met with equal fervor (if not more) than unit
tests in an ideal environment.

The Bulk-Data-Stress-Test Pattern

This test is designed to validate the performance of data manipulation when working with large data
sets. These tests will often reveal inefficiencies in insertion, access, and deletion processes which are typically
corrected by reviewing the indexing, constraints, and structure of the data model, including whether code
is should be run on the client or the server.

The Resource-Stress-Test
Pattern

Resource consumption stress
testing depends on features of
the operating system and may
be served better by using mock
objects. If the operating system
supports simulating low
memory, low disk space, and

other resources, then a simple test can be performed. Otherwise, mock objects must be used to simulate
the response of the operating system under a low resource condition.

The Loading-Test Pattern

This test measures the behavior of the code when another machine, application, or thread is loading
the “system”, for example high CPU usage or network traffic. This is a simulation only (which does not use
mock objects) and therefore is of dubious value. Ideally, a unit test that is intended to simulate a high
volume of network traffic would create a thread to do just that—inject packets onto the network.

CONCLUSION

This article has described 24 test patterns that hopefully bring the technique of unit testing closer to a
more formal engineering discipline. When writing unit tests, reviewing these patterns should help in identi-
fying the kind of unit test to write, and the usefulness of that unit test. It also allows the developer to
choose how detailed the unit tests need to be—not every piece of code needs to be stress tested, nor is it
cost effective to do so.

As you can see from this article, we desperately need some tools that generate unit tests automati-
cally. I’m not much of an advocate of code generates, but I can see that unit testing would really benefit

Volume IV; Issue 1

February 2004
Unit Test Patterns

Marc Clifton

Page 37

In Agile methods, we often hear a lot about the importance of simplicity: simple design;
do the simplest thing that could possibly work; simple tools; minimal documentation...
Much of the documentation and artifacts created in larger software development
methods is for the sake of capturing historical knowledge: the rhyme and reasons
behind why something is there, or is designed a certain way.

The desire for such information is often used to justify the need for formal traceability
and additional documentation for the sake of maintainability and comprehension.
Some very powerful and sophisticated tools exist to do this sort of thing. And yet, there
are basic fundamental principles and simple tactics to apply that can eliminate much
of this burden.

WHENCE FORMAL TRACEABILITY?

The mandate for formal traceability originated from the days of Department of Defense (DoD)
development with very large systems that included both hardware and software, and encompassed
many geographically dispersed teams collaborating together on different pieces of the whole system. The
systems were often mission critical in that a typical “bug” might very likely result in catastrophic loss of
some kind (loss of life, limb, livelihood, national security, or obscenely large sums of money/funding).

At a high level, the purpose of formal traceability was three-fold:

1. Aid project management by improving change Impact Analysis (to help estimate effort/cost, and
assess risk)

2. Help ensure Product Conformance to requirements specs (i.e. ensure the design covers every
requirement, the implementation realizes every design element and every requirement)

3. Help ensure Process Compliance (only the authorized individuals worked on the things [require-
ments, tasks, etc.] they were supposed to do)

On a typical Agile project, there is a single team of typically less than two-dozen. And that team is
likely to be working with less than 10 million lines of code (probably less than 1 million). In such situations,
many of the aforementioned needs for formal traceability can be satisfactorily ensured without the
additional rigor and overhead of full-fledged formal requirements tracing.

Rigorous traceability isn’t always necessary for the typical Agile project, except for the conformance
auditing, which some Agile methods accomplish via test-driven design (TDD). A “coach” would be respon-
sible for process conformance via good practices and good “teaming,” but likely would not need to have
any kind of formal audit (unless obligated to do so by contract or by market demand or industry stan-
dards).

Volume IV; Issue 1

February 2004
Unit Test Patterns

Marc Clifton

from code generation. It would all but eliminate the arguments against unit testing based on cost and
effectiveness, and could also be used as an application generating tool—given information on the unit test,
the code generator can also create the application code classes, structure, and stubs.

ABOUT THE AUTHOR

Marc Clifton lives with his son and girlfriend in Rhode Island and works as an industry consultant and
developer. He is currently writing a book on the application of Agile Methods in the .NET framework, has
made numerous contributions to The Code Project website, and has started an Advanced Unit Testing
project (http://aut.tigris.org/) on Tigris.org. To contact him, please send email to
webmaster@knowledgeautomation.com.

Extreme Locality

Brad Appleton

Page 38

Page 39

Volume IV; Issue 1

February 2004

Extreme Locality

Brad Appleton

Agile methodologies turn the knob up to 10 on product conformance by being close to the customer, by
working on micro-sized changes/increments to ensure that minimal artifacts are produced (and hence
with minimal reconciliation) and that communication feedback loops are small and tight. Fewer artifacts,
better communication, pebble-sized change-tasks with frequent iterations tame the tiger of complexity!

THE PRINCIPLE OF LOCALITY OF REFERENCE DOCUMENTATION (LORD)

Not all software projects fit into the ideal smaller-scale environment with closely collaborative project
communities. These larger projects require more artifacts. More artifacts, means more things to trace, and
more differences to reconcile, and more effort to track and maintain them. Here, the principle of locality of
reference can be applied to documentation (as well as to a configuration item and the configuration
identification that describes it). The Principle of Locality of Reference Documentation (LoRD) [1] states
that:

The likelihood of keeping all or part of a software artifact consistent with any
corresponding text that describes it is inversely proportional to the square of the
cognitive distance between them.

A less verbose, less pompous description would be simply: Out of sight, out of mind!

Agile methodologies address artifact traceability by minimizing the number of different artifacts
produced (especially non-code artifacts). In the extreme case, LoRD says that when the distance between
two things is effectively zero, then there is nothing to trace. (Note that cognitive distance is basically the
same thing Constantine and Lockwood mean by visual distance [2]..

For example, in an extreme programming (XP) project, how do I trace a story to its tests and vice-
versa? An extremist might say:

“Simple! Just flip over the index card that contains the user story. They’re on the
same physical artifact - problem solved because the pieces of information to trace
were never split up into separate physical elements in the first place.” Regarding
tracing requirements (stories) to code changes ... if it’s required (for whatever
reason), might not a checkin or checkout comment simply identify the corresponding
story? Seems to me that would do it for tracing to unit-tests too. So that takes care
of the cards and code.

Now maybe not all Agile projects use index cards as the sole means of requirements capture (cards
are often just an initial capture mechanism, with a tool being used to store and track/sort/report the
requests for features and fixes.), but the basic idea is the same: Placing the related (traceable) informa-

tion in the same “storage” container minimizes the burden of maintaining linkages.

LEVERAGING LOCALITY AT MULTIPLE LEVELS

This is the essence of applying the LoRD principle! Ideas such as “Literate Programming” [4] and the
ability to declare variables in C++ and Java just before their use (instead of “up front” at the very begin-
ning) are all based on this same principle of locality of reference! Other applications of LoRD include:

• The Document is in the Code - Anyone who has done literate programming [3] or used javadoc
or Perl POD or the embeddable documentation systems for Python or Ruby code should be familiar
with this. Such systems have even been extended on occasion (e.g., with a “Doc-let”) to cross-
reference a use-case name or other “traceable entity” that is somehow auto-hyperlinked.
• The Document is the Code - (or “The Source Code is the Design”) [4] where the names of
variables and methods are so readable and clear, and the statements, structure and interface are so
completely and clearly intention revealing as to make detailed design documentation and even
detailed code comments unnecessary

Page 40

• User Guide as Requirements Spec - For those whose teams are responsible for the end-user
documentation as well as the development, the practice of using the user guide as an initial draft of
requirements and evolving it into the actual user documentation has been a tried and true practice
over the years
• Interface/Implementation Colocation - in C/C++, many would put their corresponding header files
and source file “pairs” in the same source directory (or at least appear that way, even though they
might be physically stored in different locations for reasons of build-time performance). Ada
practitioners often did the same with package specs and their bodies. Languages like Java and
Smalltalk go one better by not requiring them in separate files in the first place.
• README per Directory - many a project source tree has used a file named “README” in each of
its directories and subdirectories to give a quick overview of its contents. The collection of
README files in the source tree effectively replaced the need for a document describing the same
information. Such READMEs can even be auto-generated/appended (from a Make/Ant file) from the
initial contents of each of its files.
• Interspersed block comments - even for those agilists who do resort to comments, many eschew
the practice of putting all/most of the commentary for a method at the very beginning. Instead, the
method-comment might contain only interface information and a brief “headline” description or
paragraph; any necessary gory details would appear in block comments immediately before the

A system’s user-interface is where a user interacts with the system to complete tasks and achieve
goals. Thus developers tend to organize a user interface in terms of the tasks done by users. However,
“Tasks” comprise only one of four possible types of organization for a user interface. The other three types
of organization are “Time,” “Tools” and “Things.” At first glance, these may seem very similar, but the
distinctions among them can yield very different user interfaces containing the same functionality. Current
user interfaces tend to incorporate more than one type of organization, and understanding the differences
among the four types can help create better user interfaces.

A true “Tasks” organization contains multiple workspaces, with each workspace customized for one or
more specific tasks. The simplest example of a “tasks” organization is the “Save Workspace …” command
in Microsoft Excel. With this command, a user can save information about all open workbooks, such as
their locations, window sizes, and screen positions in one .xlw file, such as:

customization of the default workspaces, and/or creation of new workspaces, provides flexibility so that
the user interface can change as the users’ tasks change. The provision of workspaces allows users who
always do specific tasks to start and resume their work with a minimum of keystrokes.

In this example, the workspace contains four Excel workbooks: Book 1,
Book 2, Book 3 and Book 4. A user may change the size and position of the
Book 1 display when using it by itself, but opening the .xlw file will display the
size and position of all four books as originally saved in the workspace. The
workspace does update the display to include the saved contents of the
workbooks so that the information is current.

A large, complex system may contain multiple default workspaces for
some or all of the tasks supported by the functionality. Allowing

Volume IV; Issue 1

February 2004
Extreme Locality

Brad Appleton

The Four Ways To Organize A User Interface

Martha Lindeman, Ph.D.

Page 41

For tasks that are not clearly defined, a “Tools” or “Things” organization may be the best organization
for a user interface. A Tools organization normally has one fundamental type of user object and many
tools that can be used to operate on that object. For example, Painter and Adobe Illustrator display a
canvas or artboard surrounded by palettes containing many different types of tools. Thus a primary
indicator of a Tools organization is frequent use of “tool palettes” or “toolbars” that may be predefined or
user customized.

In a Tools organization, the user interacts with a fundamental object via some type of software tool
(e.g., using a ‘pen’ to draw on the canvas). In a “Things” organization the user operates directly on the
fundamental object(s) without an intermediary. For example, the user types characters into a document
or drags-and-drops a document icon onto a printer icon. Excel provides workspaces, but Excel itself is
organized as a “Things” user interface with workbooks, worksheets, rows, columns and cells as the pri-
mary things. Tools, such as the Chart Tool, are available but they are not the primary focus of the user-
interface organization. Unless shown in the toolbar, tools are hidden under second-level menus, such as to
insert objects or do data analysis.

The final type of organization is Time, which focuses on software control of one or more real-time
processes. For example, a user interface might show the flows of liquids through a refinery. There is no
single ‘thing’ in the refinery because the crude oil is transformed into numerous other ‘things,’ such as heat-
ing oil and gasoline. The process is a pre-defined set of possible states and changes, and the users control,
trouble-shoot, maintain and supervise the on-going operations.

To successfully control a large-scale process, users must understand the ‘global’ (e.g., entire refinery or
nuclear reactor) consequences of local actions (e.g., shutting a valve to change the flow of coolant). In
these types of situations, a user interface focused on local ‘things’ rather than the Time-based global
picture may have disastrous results (e.g., nuclear-reactor meltdown), because users are too overwhelmed
to do the requiredglobal integration. When the time-based consequences are visibly supported by the user
interface, the users can devote more of their cognition to trouble-shooting and decision-making.

From a user’s perspective, each of the four types of organization requires creating a somewhat differ-
ent type of mental model. When the four types of organization are mixed together within one user
interface, either the developer or the user will have to integrate the models. For a developer, creating an
‘intuitive’ user interface means doing the integration in a way that is consistent with, or at least builds
upon, the users’ existing mental models.

NTRODUCTION

I have been using Agile methodologies for over 5 years now. I was introduced to them while working
with Mr. Marshall Gibbs (currently CIO of Information Resources, Inc.) in 1998. So, at the outset I would like
to dedicate this article to him.

When I was introduced to agile methodologies, it was a cool thing and was very different from most of
the way projects were handled in large companies. Since we were involved in product development we
had the need and the luxury to be innovative and try different approaches to the way we delivered
software products. For us, as with any product development firm, time is of the essence and generating
demonstrable functionality as quickly as we can was of highest importance.

SCRUM AT SHIPXPRESS

Volume IV; Issue 1

February 2004
The Four Ways To Organize A User Interface

Martha Lindeman, Ph.D.

Agile Distributed Teams

Raghu Misra

Page 42

Agile works best when project sponsor/owner and senior team members believe in it and the capabilities
of the team. Thankfully it was an easy sale at ShipXpress where we have been successfully using it since
our inception. We are regularly closing new customers using Agile methodologies. And I am proud to
mention here that we got few customers primarily because of Scrum. We are so excited about Scrum that
we are adopting the philosophy in our Sales and Marketing processes.

Scrum is a easy to sell to Senior Management of the customers too – primarily because:

• It increases the transparency of the development and delivery processes
• Customers get to steer priorities / deliverables and control the development and delivery process
• Customers get immediate benefits from immediate deliveries

Agile methodologies are perfect for small companies with low budgets (since there are no funds
to spend on the whole vision anyway. These companies are forced to produce salable functionality
very soon without wasting too much money or time.
DISTRIBUTED TEAMS A REALITY

As everybody already know by now, distributed teams are a reality. I would like to define a distrib-
uted team as a team where the members are separated geographically and are operating in different
time zones. A distributed team is not necessarily a team that is both onsite and offshore.

Earlier whenever the teams were distributed – the activities were split across the locations. There used
to be a Onsite team which was in-charge of all customer interaction (requirements gathering etc.) and
prepare the functional specifications for the application / system being built. These specs used to be sent to
offsite teams for coding and delivery to the onsite team for implementation.

In some of my projects the Product Owner was remote (customer site), QA was remote (offshore),
UAT was remote (customer site) and core development was happening in Jacksonville, FL from where all
the activities were coordinated.

I completely agree with Mr. Martin Fowler’s view about separating functionality and not activity while
having distributed teams. I have been following this philosophy for quite a while in many of my projects
with great success. This will makes life easier in terms of dependencies across the team members in terms
of communications and build level dependencies. Each sub-team can concentrate on building demon-
strable functionality as if it is operating in a island (as far as this piece of functionality is concerned).

IMPORTANCE OF TOOLS

I cannot stress enough the importance of having the right tools accessible to the team members so
that they can be productive in a distributed development and delivery environment. Tools like Groove,
Intranets.com, MS SharePoint, IM, e-mail, web and video conferencing etc. are very valuable and effective
for communication with each other and keeping everybody on the same page.

Luckily, I learned early in my career that documentation by itself does not generate any Business
Value but it is the system(s) that get built that have value. People pay for functionality and not pages of
documentation.

The development team definitely loves Scrum because there is less documentation to be done. In
general the techies hate documentation with a passion (including myself), but it is necessary to have some
kind of documentation which is adequate to give a decent idea of what the functionality / code / test
cases etc are about without looking at the code itself. One very positive thing I have noticed with distrib-
uted teams is there is documentation generated automatically in the form of e-mails or word documents
or IM chat messages while we are communicating with the guys who are part of the team.

Volume IV; Issue 1

February 2004
Agile Distributed Teams

Raghu Misra

Page 43

Page 44

DOES 24-HOUR DEVELOPMENT WORK?

I should say, 24 hour dev works in some cases - like bug fixes, small / trivial updates and Testing / QA
etc. There has been a lot written about advantages and dis-advantages of time zone differences (prima-
rily between USA and India). The dis-advantages are easy to overcome by having a sufficient enough
overlap time between the teams here in the USA and in India. The big advantage is having a team that
will work like a 2nd / 3rd shift of USA business hours. This will work under the assumption that everyone
(USA and Indian team) is on the same page with the existing code and what needs to be done. Some-
times you need someone awake here during the wee hours to answer the questions of the offshore team.
This has worked for us many times where-in we impressed our customers with new functionality as well
as bug fixes updated to the production environment overnight. But, we don’t operate on this notion on a
daily basis. We do this only to handle some urgent cases like new reports / functionality for demos, bug
fixes etc.

Scrum Development Vs. Scrum delivery
Do not under estimate the Culture shift that is required for end users too – end users in a large stock

brokering house where I was consulting CIO did not want even bi-monthly releases. They preferred one
big bang delivery of the entire application after 9 months to a year. The reason being end user training
time, disruption to end users during the implementation process, the requirement to use a very hardened
application (since it was mission critical) which is like a work-horse which ideally does not break and does
not change.

Scrum / Agile make great sense for ASPs / Hosted applications and not necessarily where installation,
configuration and legacy integration needs to be done at customer location(s) etc. I have seen almost all IT
teams at our customers to ask Big Bang (One Time) implementation whenever there is any kind of
integration with legacy applications in involved. Its Ok even if the software is intelligent enough to pick
new versions/updates from a central location and auto update itself (something like a Java application
using Java Web Start or .Net’s Web Forms etc.).

WEEKLY / BI-WEEKLY DELIVERIES VS 30 DAY DELIVERIES

The key to short delivery cycles is to get the base architecture in place first - so that additional function-
ality is bolted on as it gets ready. We have delivered additional functionality in weeks over and over
again with great success in a distributed team environment.

WHERE DISTRIBUTED TEAMS WORK AND DON’T WORK

Communication is the key: Can the remote resource take their cue from an explanation which is a 1-
line bullet point or do they need a 10-line explanation or even a 5-page explanation? It helps a lot when
the team members have worked together on earlier projects too. The better the understanding between
the team members, the better the delivery quality and time. Its also important that all the team members
are aware of the Agile methodologies and are completely sold on the concept.

Everybody should understand that Agile / Scrum is a constant pressure environment as the delivery
dead lines are on a very frequent (monthly or shorter) basis. This can be compared to the education
systems in India and the USA. Indian education system is Bing Bang. There will be examinations at the end
of the year. Ifthe student studies well in the last few months he/she can easily get good grades and move
on. In contrast Agile/Scrum are like the education system in the USA where the student is graded through-
out the year at regular short intervals.

Also, projects which are componentize-able are ideal for distributed teams. If the project is being
delivered using OO practices its ideal as opposed to Mainframe type applications.

Volume IV; Issue 1

February 2004
Agile Distributed Teams

Raghu Misra

Page 45

CLOSING THOUGHTS

Distributed Teams are a reality and are here to stay. Agile techniques make them more viable
because of the inbuilt risk management (because of visibility to project status) capabilities and flexibility to
change course / functionality as the business environment changes. Currently people are offshoring for
commercial, cost cutting reasons. As people who are already who are already doing offshoring will tell
you, traditional offshoring comes with lots of process and infrastructure overheads. The trick is to continue
to use offshore/near-shore teams for what they are good for (cost cutting and 24 hr development and
support) while using Agile techniques and methodologies.

ABOUT THE AUTHOR

Raghu Misra is an experienced IT / product strategist and a Certified Scrum Master. He is currently
the Co-Founder & CTO of Shipxpress (a supply chain solutions company), based in Jacksonville Beach, FL.
He can be reached via e-mail at raghu@shipxpress.com.

I responded to Ken Schwaber’s request for editors for the Agile Times in mid November and volun-
teered to be an editor for a section on Agile Project Management. My thought was this would be a great
way to get involved with the Agile Alliance, and to put some purpose to my learning efforts about Agile
Software Development.

My contributions to this section are under the title the Pragmatic Project Leader. I chose that title
because in my opinion project leadership is primarily a matter of using the most appropriate project
management tools for a particular project. In other words, do what works for your particular environment.
The columns under this title will study the role of project management and the practices that agile ap-
proaches introduce to the traditional project management tool set. If you have some thoughts about Agile
Project Leadership or Agile Project Management and would like to submit an article for this section in a
future issue of Agile Times, please send me an email at kent@madsax.com.

INTRODUCTION

Over the past several months I have pondered the question that serves as the title of this article. There
is a great deal of personal interest in this question and the corresponding answer because my role on
software development projects is that of analyst and project manager. After reading the various Agile
mailing groups, it seems that most of the focus of Agile approaches has been on the developers and
practices that help them be more effective developing software, and for good reason. Unfortunately, an
unintended result of this focus is that, until recently, the role of project management in Agile approaches
has been marginalized. This marginalization is apparent in the Agile Manifesto where most of the items on
the right side of each statement, which are important but favored less than those on the left, are items
typically equated with traditional project management.

With that in mind, I believe there is still definitely room in Agile software development for project
management. The key thing to understand is that project managers find themselves taking on different
responsibilities and using different practices in Agile projects when compared to traditional projects. This is

Volume IV; Issue 1

February 2004
Agile Distributed Teams

Raghu Misra

The Pragmatic Project Leader

Kent McDonald

Agile Project Management

Kent McDonald

Page 46

key for the concept of the pragmatic project leader because the vast majority of projects exist in an
environment that calls for a combination of tools from traditional project management and the practices
introduced when managing Agile projects.

In this article, I examine how the values of the Agile Manifesto impact the role of project management
and provide pragmatic project leaders with new practices for leading Agile, and not so Agile, projects.

INDIVIDUALS AND INTERACTIONS OVER PROCESSES AND TOOLS

Agile approaches are based on the assumption that software development is a highly creative and
intellectual exercise that does not always follow a predictable path, due to the large number of ways that
the same problem can be solved through software. Because of this assumption, Agile approaches stress
the importance of the people on the project team and the communication between them as critical to the
success of the software development project. Instead of relying on a manual full of processes, Agile meth-
ods focus on principles and a small set of rules that project teams can use to guide them in development of
software. This leaves the project team to focus on the core activities of solving the business problem instead
of wading through the myriad of processes that do not always provide business value.

Project managers find that instead of managing the team to make sure that processes are followed,
they make sure that the people on the project have the appropriate knowledge and skills to complete
the project. They take on the role of a visionary, making sure that the team stays focused on the ultimate
goal of the project. They take on the role of roadblock remover, finding out what is preventing the project
team from focusing on the right activities and removing those roadblocks, which in some cases may be the
processes that the project manager so faithfully upheld. They may even find themselves taking on roles
usually held by other members of the team, such as analyst, architect, developer, or tester depending on
the needs of the project. These new roles arise because the project manager is not spending their time
managing the variety of processes and instead can focus on what needs to happen to build software that
provides value to the customer.

One of the key practices that allow the project manager to focus on the development effort is the use
of simple tools that are appropriate for the task at hand. The tools mentioned in the Agile Manifesto are
typically thought to refer to development tools, but I think it could apply to project management tools as
well. There is a widely held belief that you have to build your project plan in Microsoft Project or a similar
project planning tool. I am of the opinion that a plan in Microsoft Project can often be overkill. If all you
need to track is who is doing what and when it needs to be done, that tracking can be done by simple
tools such as charts on a wall or a spreadsheet. Status reports are important as well, but it has been my
experience that many status reports provide the wrong information, and often too much of it. Status
reporting from the team to the project manager is much better communicated verbally in quick daily
discussions, such as the Daily Scrum utilized by the Scrum methodology. Status reports to those outside the
team should focus on what the team has accomplished, what the team plans to do next, and what issues
are getting in the way of the team that the audience can help out with. A caveat with that last item is
that the audience should already have been notified about any issues upon which they can have an
impact as soon as they became apparent.

WORKING SOFTWARE OVER COMPREHENSIVE DOCUMENTATION

Traditional project managers are familiar with heavily documentation focused processes. These pro-
cesses can feature phases where the main output is documentation with no actual work done building
software. This reliance on documentation is due to the number of handoffs between different groups of
people with different specializations working on the same project. Projects also produce a great deal of
documentation for the purpose of communicating status or recording decisions for future reference.

Volume IV; Issue 1

February 2004
The Pragmatic Project Leader

Kent McDonald

Page 47

Project managers in Agile projects reduce the reliance on documentation that is handed back and
forth between the project members and instead instill an environment that supports and encourages face
to face communication between the team members. One way they do this is eliminate the specialization
that occurs on projects and to eliminate the phased approach to software development. Scott Ambler
introduced the concept of the generalizing specialist (www.Agilemodeling.com/essays/
generalizingSpecialists.htm) that is able to perform several different pieces of the software development
puzzle. By having a project team made up of individuals who can perform various tasks, the need for
handoffs is reduced, as the same person or group of people can discuss requirements with users, establish a
design based on those requirements, and develop the code to implement those requirements.

Another difference in the way project managers operate in Agile projects is the manner in which the
project is planned and progress is measured. Feature Driven Development (FDD) and SCRUM encourage
organizing the project plan based on features instead of tasks. As a result, progress is tracked based on
what features have been coded, tested, and are working as the user had expected rather than on which
documents have been written, reviewed, and signed off. At the end of the day, the purpose of the project
is to produce a software application, not binders full of documentation, so the project manager should
measure progress based on what matters.

CUSTOMER COLLABORATION OVER CONTRACT NEGOTIATION

Above I stated that project managers need to foster an environment that encourages face to face
communication among the team members, but I left out the phrase “and customers too” for a reason.
Customers should be part of the team. Agile methods stress the importance of involving the customer
throughout the life the project. There are many reasons for this, but one of the more important includes
shortening the feedback cycle between developed code and customer review. The sooner a customer is
able to review the software, the sooner the customer can provide direction for continued development.
Another reason to encourage continuous customer involvement is that because requirements are not
always clear at the beginning of a project. Including the customer as part of the team minimizes confusion
or misunderstandings when discussing the requirements of the application.

Perhaps the most important aspect of this value from the Agile Manifesto is the role of trust on a
project. One of the reasons for all of the approvals and sign offs that traditional software development
methodologies prescribe is because there is an environment of distrust between the customer and the
development team. The customer does not trust that the development team will build what they actually
want, and the development team does not trust the customer to tell them everything they need to know
in order to develop the right system. This mistrust is bred mostly because of a lack of true communication. I
have been involved in projects where the development team upon discovering a problem spent a great
deal of time discussing what to tell the customer, if they told them anything at all. After having lived
through some of those projects, my practice now is to tell the customer the truth, as soon as possible. I have
always found that the truth is much easier to remember, and bad news does not get any better with age.

The best way to ensure that the customer and developers feel part of the same team is to have all of
them sit together while they are working on the project. While this is an ideal goal, it vary rarely happens
in practice. In most cases the project manager has to take an active role in establishing clean lines of
communication amongst all the team members, whether they be developers, analysts, or customers. These
lines of communication need to focus on face to face conversations whenever possible. The face to face
aspect is very important because it is the best way to ensure that both parties in a conversation under-
stand each other. Emai lis a good tool to use for communication, especially when there is a need to

Volume IV; Issue 1

February 2004
The Pragmatic Project Leader

Kent McDonald

Page 48

relay information to a number of people, or when there is a need to maintain that information for future
use. Unfortunately email can often lead to miscommunication and misunderstandings and should not be
used as the primary communication mechanism between project team members.

RESPONDING TO CHANGE OVER FOLLOWING A PLAN

This value is perhaps the biggest departure from typical project management philosophy. The main
role of a project manager is to manage the project according to the plan and to manage change as much
as possible. The importance placed on this role is based on the assumption that the cost of change in-
creases as the project progresses, so change should occur as early in the project as possible. Ironically, the
response to that assumption actually validates the assumption. The more effort that a project team puts
forth to determine the requirements and design the application up front, the higher the “sunk cost” in-
curred by the project, and therefore the more expensive a change becomes.

Software is often relied upon to help solve business problems, so it is victim of the uncertainty and quick
pace inherent in the business world of today. This rapid change often throws carefully laid plans into
disarray when the various unexpected events arise. Agile software development approaches accept that
change is inevitable and look for ways to reduce the cost of change so that it can be harnessed for the
benefit of the development project. One example of how responding to change is beneficial to a project
are the changes that occur as the team learns more about the problem domain during the development
process. In my experience, the act of designing, developing, and testing the solution often leads to a clearer
understanding of the problem and solution, which can often result in changes to the software. Some
project managers incorrectly label this “scope creep,” when it is just a clearer understanding of what the
project is trying to accomplish.

To adapt to Agile approaches, project managers change their outlook on the nature of planning and
change. Planning becomes a matter of leading a project based on what is being developed, instead of
how it is developed. The project manager’s outlook on change goes from something that should be con-
trolled to something that should be harnessed for the benefit of the project. This new outlook on the
nature of planning and change in a project allows the project manager to be more flexible in the manner
in which they lead the project and enables them to better respond to the customer’s requirements.

CONCLUSION

Agile approaches propose a small set of simple rules that provide the project team with boundaries,
but allows them to do their best work and focus on providing real value to the customer. The focus of the
project falls on work by the developers to finish the software, instead of the work by the project manager
to ensure that processes are followed, plans are maintained, and changes are controlled.

There is room for a project manager in Agile software development, but that project manager my find
themselves doing things differently than they have in the past. The project manager works for the project
team instead of the project team working for them. The project manager does whatever they can to
make sure that the team is able to focus on delivering working software; this includes quickly eliminating
roadblocks that stand in the team’s way and keeping the team isolated from political battles within the
organization. The project manager fosters an environment that supports communication, collaboration and
honesty amongst the team. Finally, the project manager finds ways that they can contribute to the team
in other ways, such as doing analysis, design, development, or testing. By playing a more active role in the
details of the project, the project manager has a better understanding of the project and is better posi-
tioned to help the team make decisions and deal with the constant change to which the team is respond-
ing.

Volume IV; Issue 1

February 2004
The Pragmatic Project Leader

Kent McDonald

Page 49

This article focuses on project management practices useful for Agile projects, but not all project man-
agers have the advantage of working in an environment that fully supports Agile development processes.
The Pragmatic Project Leader picks the practices that fit best with their environment and utilizes them to
do what works. Often this will be a combination of practices from Agile software development as well as
traditional project management practices. Future articles in this series will look more specifically at the
different project management knowledge areas to see how practices from Agile projects can be useful to
pragmatic project leaders in a variety of different environments.

As January 2004 marks the 10th anniversary of the formation of the DSDM Consortium, we examine
the role and relevance of DSDM today.

SOME HISTORY

In the early 1990’s, interest in customer focussed, iterative development began gathering momentum in
the UK after Boehm (1986), Gilb (1988) and Martin (1991) outlined many of the basics approaches. While
these publications gave pointers towards how to make it work, none provided the total solution.

In January 1994, a group of 17 companies formed a consortium to study, define and promote a public-
domain standard for rapid, iterative, customer focussed development. The consortium was comprised of a
variety of organizations including large IT consultancies, tool vendors, and user organizations.

Event: Applications for DSDM Certification Close
Dates: 20 February, 2004
Type of event: Exams
Location: UK
Organized by: DSDM Consortium
Contact: info@dsdm.org
More information: http://www.dsdm.org/en/training/accreditation.asp

Event: DSDM Congress 2004: Business Performance, powered by DSDM
Dates: 11 Mar 2004 until 12 Mar 2004
Type of event: Conference
Location: Amsterdam, Holland
Organized by: DSDM Benelux
Contact: conference@dsdm.org
More information: http://www.dsdm.org/en/benelux2004/information.asp

Event: London Agile Conference 2004
Dates: Autumn 2004
Type of event: Conference
Location: London, UK
Organized by: DSDM Consortium

Volume IV; Issue 1

February 2004
The Pragmatic Project Leader

Kent McDonald

DSDM

Mike Griffiths

DSDM Ten Years On: RAD Relic Or Agile Advocate?

Mike Griffiths

Page 50

At the time of the consortium’s formation, I was working as a team-lead at one of the founding
companies, Data Sciences Ltd (a consulting company of 2000 staff later acquired by IBM Global Services).
I vividly remember using the various DSDM defined techniques on early projects, including a few non-
conventional approaches that did not make it into DSDM Version 1, published a year later. The main thing
that struck me was the increased involvement of the customer throughout the lifecycle. It made perfect
sense to engage the arbitrators of project success, but this tactic was contrary to existing beliefs that the IT
staff knew how best to develop a system once some initial, sketchy requirements were gathered.

Despite learning as we went and making all manner of mistakes, the results were very clear. End
users and project sponsors preferred the approach, they were now in control of the project’s business
direction and the resulting systems were more closely matched to the true business requirements rather
than the initially stated (often flawed) requirements. While follow on projects frequently refined the
DSDM techniques applied, no clients ever asked to go back to a non iterative/incremental approach to
development. The principles and techniques associated with DSDM methodology became an integral part
of how clients expected and wanted their systems to be developed.

RELIC OR RELEVANT?

Looking at the DSDM principles today, 10 years since their original definition, it is reassuring to see how
well they align with current best practices. The original DSDM principles were:

1. Active user involvement is imperative
2. DSDM teams must be empowered to make decisions
3. The focus is on frequent delivery of products
4. Fitness for business purpose is the essential criterion for acceptance of deliverables
5. Iterative and incremental development is necessary to converge on anaccurate business solution
6. All changes during development are reversible
7. Requirements are baselined at a high level
8. Testing is integrated throughout the lifecycle
9. A collaborative and co-operative approach between all stakeholders is essential

These principles align very well with the Agile Manifesto Principles as shown in the table below. Actu-
ally, this close alignment is not just good fortune or testament to some “great truth”. One of the attendees
of the February 2001 Snowbird, Utah meeting that defined the Agile Manifesto was Arie van Bennekum,
a member of the DSDM Consortium. Arie proposed the DSDM principles as a starting point for discussions
and ideas for the Agile Manifesto Principles. These ideas, along with many other great inputs, led to the
definition of the agile principles so familiar to us today.

STAYING CURRENT

So, while it would seem that DSDM is still applicable and current in 2004, some people have reserva-
tions and are put off by its age or association to RAD practices. In an industry where technology advances
so quickly, it is easy to see why new adopters look to the latest approaches as embodiments of today’s
best practice. Why adopt a method that dates back to RAD prototypes when there is a plethora of more
recent alternatives? DSDM distills the practical learning’s of its membership in an iterative fashion to meet
the challenges of software development for a myriad of business scenarios.

DSDM is continually evolving and adopting best practices, it is also no stranger to fighting stereotyped
perceptions. With the release of DSDM version 3 in 1996, the terms “RAD” and “JAD” were dropped and
the term “facilitated workshops” introduced to describe the high-bandwidth, face-to-face communica

Volume IV; Issue 1

February 2004
DSDM Ten Years On: RAD Relic Or Agile Advocate?

Mike Griffiths

Page 51

Agile Manifesto Principles DSDM Principles

8. Agile processes promote sustainable
development . The sponsors, developers,
and users should be able to maintain a
constant pace indefinitely.

10. Simplicity--the art of maximizing
the amount of work not done--is
essent ial.

12. At regular intervals, t he team reflects
on how to become more effect ive, then
tunes and adjusts behavior accordingly.

1. Our highest priority is to sat isfy the
customer through early and cont inuous
delivery of valuable software.

4. Fitness for business purpose is the
essent ial criterion for acceptance of
deliverables.
3. The focus is on frequent delivery of
products.

2. Welcome changing requirements,
even late in development . Agile
processes harness change for the
customer's compet it ive advantage.

6. All changes during development are
reversible.

3. Deliver working software
frequent ly, from a couple of weeks
to a couple of months, with a
preference for the shorter t imescale.

5. Iterat ive and incremental development
is necessary to converge on an accurate
business solut ion.

4. Business people and developers
must work together daily throughout
the project .

1. Act ive user involvement is imperat ive
9. A collaborat ive and co-operat ive
approach between all stakeholders is
essent ial.

5. Build projects around mot ivated
individuals. Give them the environment
and support they need, and t rust them
to get the job done.

2. DSDM teams must be empowered to
make decisions.

6. The most efficient and effect ive
method of conveying informat ion to
and within a development team is face-
to-face conversat ion.

[DSDM makes extensive use of
Workshops.]

7. Working software is the primary
measure of progress.

3. The focus is on frequent delivery of
products.

9. Cont inuous at tent ion to technical
excellence and good design enhances
agilit y.

8. Test ing is integrated throughout the
 lifecycle.

4. Fitness for business purpose is the
essent ial criterion for acceptance of
deliverables.

11. The best architectures, requirements,
and designs emerge from self-organizing
teams.

2. DSDM teams must be empowered
to make decisions.

Volume IV; Issue 1

February 2004
DSDM Ten Years On: RAD Relic Or Agile Advocate?

Mike Griffiths

Page 52

tions approach preferred for collaboration. The evolution continues, the consortium is now driven by over
1000 members and they are keen to see new approaches incorporated.

DSDM version 4.2 released last year contained guidelines for using DSDM in conjunction with XP. DSDM
remains a leading agile method in Europe; its adoption in North America has been slow but is now ad-
vancing more quickly. While the DSDM Consortium is driven by its members, it will continue to be a power-
ful advocate of agile best practices, who knows where the next 10 years will take it.

Customers often ask me what kind of problems I have encountered on DSDM projects and do projects
ever go wrong. Now I could give them a frighteningly positive impression about DSDM: superhuman team
members calmly delivering projects to meet business requirements on the due date with little mention of
the troubles encountered. However, the key to success with DSDM is user involvement and as we all know
people are unique individuals and all to often unpredictable. So, with reckless abandon, and little thought
about the impact on my career as a DSDM consultant, I have decided to come clean, and reveal a few of
my own DSDM people nightmares, partly to capture what I’ve learnt, and partly as therapy!

THE DSDM FANATIC

I was running through the Suitability Filter to evaluate potential DSDM projects with a Project Man-
ager. This Project Manager was wildly enthusiastic about DSDM and determined to use it regardless. The
reply to every question about his project was “Yes” and “Low” risk – the perfect project. Fortunately, I’d
done my own preparation on the project beforehand and recognized that this bore no relation to the
same project I’d read up on. I was able to follow up with more searching questions and I explained that
you don’t need to have a clean sheet Suitability Filter to use DSDM. The Suitability Filter identifies potential
risks that must be addressed to decide whether they are manageable or not, before making the decision
‘Does DSDM add value or does it increase the risks?’

Learning: Beware the fanatic – over enthusiasm is as bad as a lack of enthusiasm

THE WORKSHOP ABSENTEE

We were planning a series of key workshops, and achieved buy-in from all departments except one.
Historically, this department had been very powerful within the organization, and they informed us they
were all far too busy to attend, but would expect to see the workshop results and then add their com-
ments or veto the results, as appropriate. With the approval of our sponsor, we introduced and publicized
a special rule for this initial workshop, “Absence = Silence = Assent” – i.e., this is your chance to be heard,
use it or lose it. They didn’t attend, assuming (wrongly) that exceptions would be made for them, and
were horrified to see the decisions made on their behalf. After that they always made sure they had their
best representative at every subsequent workshop.

Learning: Do not allow a small minority to stop the collaborative, co-operative process.

THE MISSING AMBASSADOR USER

This business-critical project (aren’t all DSDM projects business critical?) had a full-time Ambassador
User assigned. Two months into the project, he became very ill and was signed off for several weeks. It
was not the sort of illness where we could give him a mobile phone, a bedside table, laptop and modem
(although we did discuss this as an option). However we could not afford to put the project on hold for
several weeks either. As a short-term option to keep the project moving for-ward, we decided to bring in

Volume IV; Issue 1

February 2004
DSDM Ten Years On: RAD Relic Or Agile Advocate?

Mike Griffiths

The Unpredictable Element: People

Barbara Roberts

Page 53

the Visionary and give him plenty of support from the Advisors. We had to be very firm that the Visionary
could not rework anything previously approved by the Ambassador, and once this was clear, our impro-
vised solution worked well. However, when our Ambassador returned from his sick bed, we then ran into
problems because he felt that the Visionary’s solutions did not fit his view. To avoid re-working the last
few weeks’ work, we used MoSCoW to prioritize his concerns and agreed that we would only revisit those
that were actually wrong – i.e. that must be changed.

Learning: If circumstances force staff changes, manage the handovers carefully and use DSDM
controls.controls too risky. Empowerment and rapid decision-making would involve a major culture
change (not Berserk Techies). I was rolling DSDM out into an organization where technical excellence was
the main (only?) criterion for recruitment and promotion. Developers with the ability or willingness to
communicate with other humans were rare, and commercial awareness was minimal. Successful DSDM in
this type of culture always presents a major challenge, and part of my rollout plan was raising the
company’s awareness of the wider impact of DSDM - on recruitment profiles, appraisals, grading and
promotion. DSDM is not just about IT – it affects the whole culture. The ideal is to select team members for
their soft skills as well as IT ability – skills like active listening, team working, time management, commer-
cial awareness, etc. Training can help, but it can be extremely difficult to teach soft skills to staff that feel
these are unnecessary. My last resort was to veto any staff that seemed totally unsuitable to sit near a
customer – it would be unkind to both parties!

Learning: For DSDM team members, communication and soft skills are paramount.

DSDM BY COMMITTEE

On this project, DSDM had been previously confirmed as the chosen approach, but problems arose
when I tried to agree user roles and representatives. I outlined the Ambassador User responsibilities, and
received an email containing about 35 names. There was also a postscript explaining these were only the
first thoughts, and that probably other names would need to be added. I re-stressed the responsibilities of
the role (especially decision-making and business empowerment) and asked for a list reduced to single
figures (preferably one or two). A second email cancelled all the names on the first list and offered a
single name – the Department Chief Executive – the only person with the authority to make the sorts of
decisions we needed. At this point it was very clear that getting the necessary time commitment and close
involvement would be impossible, and the use of full DSDM would probably be achievable overnight). In
order to maintain the sanity of the team, we decided to use a partial DSDM approach.

Learning: Without the supporting culture, a full DSDM approach may be impossible

THE MAIN LESSONS

• Always do your homework and don’t always believe everything you’re told
• Negotiate but be prepared to stand firm when it is important
• Always, always, always contract for the minimum user involvement (even on internal projects)
• Check up-front how the Principles will be applied. Discuss this with the customer, to check their
understanding and to get their agreement.
• Define very early on how empowerment will work in practice (preferably as part of the Project
Terms of Reference)
• Remember that use of DSDM is a sliding scale – all DSDM, some DSDM, a few DSDM techniques –
and it can change during the life of a project

Volume IV; Issue 1

February 2004
The Unpredictable Element: People

Barbara Roberts

Page 54

In a previous life within Xansa I led the DSDM Consultancy Practice where one of the service lines on
offer was to troubleshoot/health check DSDM projects. These projects were either undertaken by in-house
departments or by software houses. By far the most common reason for failure was an ineffective Busi-
ness Study. The urge to commence prototyping/ coding without undertaking the Business Study proved
impossible to resist for many. So how do organisations new to DSDM ensure that the Business Study is
carried out effectively? The bottom line is to ascertain whether the objectives for the Business Study have
been truly satisfied. In order to find out we must demonstrate answers to the following questions:

1. Do we have an agreed scope of the business processes to be supported by this project, and the
benefits expected from it?
2. Do we have the ‘names in the frames?’ For instance, do we know who does what and when they
do it? And how do we know we have finished a prototype? Can we still use DSDM? If not, why not?
And what are the associated risks?
3. What technical infrastructure do we need to:

• Build it?
• Test it? (all aspects of testing!)
• Deploy it?
• Support it? – both sustain and optimize

All of the above need to be designed to meet the ‘must have’ non-functional requirements such as security,
performance, maintainability and so on.

SHORTCUTS DON’T PAY

Projects and project teams, which take short cuts or pay lip service do so at their peril and risk the
wrath of their organisation and customers. In theory this stage should be easy to do and applying the
Business Study Products Quality Criteria is the way to check that it is being done properly. Please remem-
ber that quality criteria are not there just to apply when reviewing a product, but are needed when
planning the creation of that product.

I know it may be seen as boring to do it according to the book, but so is undercoating before painting.
It’s only common sense but how common is sense?

It always amazes me when I review DSDM Business Studies that we seem to ignore things that have
been proved to work, like problem analysis and determining the cause and effect. I have found many
projects don’t challenge users who articulate the requirements except in regard to prioritisation. In effect
the users are coming with a solution defined in business terms and then that is translated into a technical
requirement. In my experience it has often been beneficial to the project when we have asked the user to
take a step back and define the problem (this is not as easy as it sounds and requires a strong facilitator).

When we do this the whole project team then understands the problem we are attempting to ad-
dress. On more than one occasion changes to business processes have solved the problem rather than an IT
development that the users were insistent upon.

When a Business Study is undertaken effectively the main benefit is that the tough questions are
asked early in the project lifecycle. Questions which during the traditional approach are left until much
later, such as, how are we going to test and how are we going to deploy it? This quite simply allows us
more time to resolve the issues, and reduces the potential for unpleasant surprises later in the lifecycle. I
mentioned earlier about prioritisation during the Business Study workshops. Early signs of dissatisfaction
can become apparent, as prioritizing can be a very stressful time. This is nearly always brought about by
the lack of a quantitative business case. It is difficult to achieve true prioritisation when requirements are
prioritised on politics, or seniority or just good old manipulation.

Volume IV; Issue 1

February 2004
The Business Case For The Business Study

Barry Fazackerley

Page 55

When I trained in DSDM I always said that a ‘must have’ requirement must have a direct bearing on
the business case of the project. In other words, if a piece of functionality could not be delivered, the
project’s return on investment would be diluted. Then and only then could the requirement be deemed a
‘must have.’ Ialways ensure that the rules on prioritisation are agreed prior to the requirements workshops
and if a quantitative business case doesn’t exist, I will create one with the Visionary either during the
Feasibility Study or at the start of the Business Study.

GETTING DOWN TO TECHNICALITIES

So you now have the business side of the project sorted out but what about the technical side? What
about the delivery? You know what you want and who is going to do it, but you don’t know how you
are going to do it or when you are going to do it by.

Which takes us to the System Architecture Definition (remember good design principles here). Recall
that in the Business Study we move from estimate to quote. We provide cost and delivery dates for each
increment so it’s essential to undertake real design work. It is also important to remember that the quote
you give should preferably include all associated costs including such items as hardware and license costs.

I strongly recommend that a separate Test Strategy and Configuration Management Strategy are
produced and that the Implementation Strategy and Development Risk Analysis Report are brought
forward from the Functional Model Iteration in order to provide a truly effective foundation for the rest of
the project. This leaves the Development Plan, I believe it is important that all stakeholders underwrite the
plan and that the plan reflects activities and responsibilities of all involved in the project. On many occa-
sions I have seen this co-operative and collaborative approach just reflect the contribution of IT! So prepare
your surface properly with an undercoat and the top coat will go on much more smoothly!

Many things are happened in Europe in the last few months and many others will in the next ones.
Beside the growning of single usergroups meetings I think five events in particular can be taken as an
indication of the Old Continent Agile environment.

XP Day Benelux 2003 on 21th, November in Breda, The Netherlands: a one day conference about all
aspects of Extreme Programming and other agile software development methods like DSDM, Scrum,
Feature-driven development, and Crystal with 20 sessions (!) and 24 presenters (!!).Session presentations
and workshop transcripts are available at http://www.xpday.net.

XP Day London 2003 on 1st and 2nd December: the third edition of the two days international
conference for project managers, developers, and testers with 23 sessions and speakers from the UK, USA,
and Europe in general. All the presentations are available at http://www.xpday.org

From Agile to Lean: the day after XPDay London another great meeting, this time in Scotland, with
Mary Poppendieck, Martin Fowler and Ammar Kaka as keynote speakers attracted 75 people! A nice
report can be read at http://www.agile-scotland.org/

And more! Between April 20th and April 25th, 2004 in beautiful Vienna, Austria there will be the first
Scrum Gathering Europe, a grassroots conference developed for the IT community to promote research
and to educate individuals about the Agile methodology known as Scrum. More info at http://
gathering.scrumalliance.org/

Of course we cannot miss to remember that the Fifth International Conference on Extreme Program-
ming and Agile Processes in Software Engineering (aka XP2004) will be held between June 6th and June
10th in Germany: http://www.xp2004.org/

Volume IV; Issue 1

February 2004
The Business Case For The Business Study

Barry Fazackerley

Volume IV; Issue 1

February 2004
Agile Europe

Marco Abis

Page 56

Acceptance of Agile processes has required a bit of a leap of faith for most who manage software
developers for various reasons. One that strikes me as extremely important stems from the need for
Executives and Managers to quantify and qualify project status either to their senior management or
investors.

The questions asked in the boardroom don’t translate well into “Agile” terms and, as such, understand-
ing between engineering and executives can fail. Although the bottom line improves over time, the day-
to-day status is harder to visualize. When emphasis is properly placed on the people and product some
amount of project status measurement may suffer. Process for the sake of process is a bad plan, but
some means of measuring status, while leaving the technology talent to the art of building a software
product, is critical to keeping a project funded and supported by Executives, Marketing and Sales.

A functioning Agile “Code Factory” monitors status by managers gathering data manually. They then
create reports in terms of budget, schedule and feature that will be used by outside factoring groups. This
data gathering takes up approximately 25% of a project manager’s and 15% of a developer’s time. These
are expensive resources and are better suited for other tasks. When considered as a part of the overall
cost of a project, this status collection is expensive, and serves limited purpose. This single fact is both a
great reason to use Agile and the largest reason for not adopting the methods.

The balance between the need for a pure creative process in development and quick, accurate and
objective reporting of status for management has been an impediment to acceptance of Agile in the
software industry. The concept of Agile was created by developers for developers, without a strong
consideration of management needs. Management overhead had become an unbearable burden for the
creative staff to bear. When a process is developed without consideration of all sides of the bargain, a
void is created. This void has made it harder for managers to sell Agile to their executive staff, as the
justification of spending and staffing in an IT department becomes much more obscure. In all fairness it
must be said that “Agile” is intended to shorten measured project intervals and be iterative in nature, with
the intention of minimizing management overhead in a project. However, this places the burden of
reporting onto the Project Manager, although it is still based on the opinion of technical staff. Every project
status report is thus subjective, and may or may not be a true reflection of the actual status.

The question might be raised, how is project status tracked in an “Agile” development team. As the
chart on the following page shows, project tracking might not be addressed directly in an “Agile” method.
Standards of good project management, of course, apply. The problem with these precepts is that they
are only a loose set of guidelines. Theories come and go, are applied differently by one manager to the
next, but in the end it becomes a question of what gets measured, understood and communicated is
based on the skill and perception of the PM. “Agile” shows a way for developers to write better code
cheaper, but acceptance by executives and managers who pay for software development remains an
issue that must be solved. (See chart below)

I believe that becoming “Agile” is the most promising path for the software industry and a method to
measure progress without impacting the developers that is based in facts gathered from objective sources
is the key to “Agile” gaining traction. It therefore becomes essential that we establish a set of standard
measurements that can be collected objectively to determine actual and comparative status of a project,
its’ features and sub-features. As long as executives and managers believe “Agile” is the fad of the day,
and does not take their needs into consideration, acceptance will be hard to obtain.

Volume IV; Issue 1

February 2004
Is “Objective Measurement” The Key To Accepting Agile?

Cliff Gregory

Page 57

Agile Method

Scrum

Dynamic
Systems

Development
Method (DSDM)

Crystal Methods

Feature Driven
Development

(FDD)

Lean
Development

Extreme
Programming

(XP)

Project Management Or Tracking Method

Scrum has a very mature project tracking method. Each Scrum
team is responsible for building and maintaining a "Product
Backlog" document. This backlog is a list of all features and
technology used. A daily meeting during a Scrum "Sprint" at which
any issues or blocks are discussed and resolved. The meetings and
the Backlog are the foundation for tracking progress and status.

DSDM has been use effectively since 1994. DSDM is highly iterative
with minimal documentation. The feature set is at only the very
highest level and is extremely fluid. There is no objectively defined
method for tracking the progress of a project under DSDM, so it for
the Project Manager to facilitate communication within the
development team and with the end-user community.

Crystal is actually a family of methods. The core of the method is
that the development process should be self-adaptive, i.e., the
development team can promote or demote aspects of the method
as the support or block the process. Crystal has no defined process
for tracking the progress of the project other than subjective and
informal meetings between the team.

FDD is characterized as being among the most lightweight of the
Agile methods - and one of the most successful when properly
scaled. FDD has no defined objective process for tracking the project.
In FDD the Project Manager is given a great deal of autonomy to set
priorities and schedules. The PM's knowledge of the status of the
project is based on their relationship to the project team.

Lean Development is another very mature Agile method. It stresses
strategic, long-term thinking and is organizationally driven. Lean
Development places great emphasis on Risk Management, therefore
the Project Manager gathers a great deal of information on a
regular basis from the development team. It has a robust template
oriented system for gathering metrics on project progress. The Project
Manager spends much of the time gathering largely subjective
opinions from the development team, with the single objective data
point being what feature has actually been delivered.

XP is probably the most popular Agile method right now. It is
heavily developer focused and has the lightest emphasis on
documentation and project artifacts. XP is defined by an emphasis
on group commitments to values and principles. Communication
and feedback from the team tell the Project Manager the status of
the Project. Other than working software produced, there is no
objective standard for measuring project status.

Volume IV; Issue 1

February 2004
Is “Objective Measurement” The Key To Accepting Agile?

Cliff Gregory

Page 58

develop a means to do those things within your work-group or company. No current set of standards, or
means to gather standards is in vogue.

In my development group, we choose to measure information gathered from code versioning, bug
tracking and project management software. We calculate a measure of progress toward a short dura-
tion, highly iterative goal contributing to a feature or sub-feature frequently, often more than once each
day. We graph this progress and feed the data back to developers to help them understand when the
“painting” will be finished, and to the executives to help them make wise choices about the business. We
have become an “Agile” code factory without ever stating the fact, and since the production stays on
schedule and budget we are measured as a success.

We have the advantage of being a small group of developers working on a common goal with
relatively easy communication and interaction. So, can we translate our success into the need for a stan-
dard? My opinion is that we can. In one company that I studied, I found that they undertook over 28
thousand projects each year, some small and some large. They had adopted an “Agile” approach to
developing code and had placed the burden of reporting status on the PMs. The staff was over 300
project managers, meaning each manager was responsible for more then 93 projects per year. They had
no standard methods and expected each manager to decide how each project was to be managed.
Each PM was burdened with a detailed status of all of their projects each week in a large status meeting
that took an entire day. They gathered the information on Friday, using most of the day to gather it by
speaking to each developer and record it, than on Monday, they build a status chart and a list of open
issues and constraints. This all was used at the Monday afternoon meeting where status was gathered by
their Directors who were expected to give a status of each project on Tuesday to the Senior Executives
who could then hand down guidance. It appears to me that nearly1/10 of the developers time, 1/3 of the
PMs time and ¼ of the Directors and VPs time was being misallocated. “Agile” seeks to remove the
overhead, but in this case they had replaced the overhead with a burden almost as hard to carry. What
is the cost of this method of accounting for status? In this organization with they had 10 VPs, 300 PMs and
4,500 developers. The total cost of time misdirected equals approximately $62 million per year or about
10-15% of the total IT budget. This significant amount mitigates the overall savings from using “Agile”
processes. Application of a standard set of measured metrics directly affects the cost of gathering this
data, and allows automation of some of the process needed to gather the required data. Using a stan-
dardized set of reports and charts, created as a part of a normal process can further reduce the overall
costs. The real key to getting “Agile” into a development group is going to be minimizing the cost of
generating the needed reports while maximizing the accuracy and objectivity of data provided to man-
agers.

“Agile” minded Project Managers and Executives must start building an acceptable set of objective
standards and the means to efficiently communicate the data collected to all parts of the company.
Letting the creative development group be free to design, and build innovative software products while
giving the Executives, Sales and Marketing the information needed to build a market for those products
and effectively manage the overall process on-time and on-budget with the desired features.

“Agile” processes are the means to making innovative software products efficiently. Standard report-
ing of status is the means to manage funding, planning and selling those products. To have a successful
software company both of these critical functions must be enabled.

Volume IV; Issue 1

February 2004
Is “Objective Measurement” The Key To Accepting Agile?

Cliff Gregory

Page 59

In this first column, I’m trying out a different format. Martin Fowler gave a thought- provoking keynote
talk at XP Day in London last month, and I want to pass it along to a wider audience. The following was
written from my notes taken at the event, and OK’d by Martin afterward. I’ve added some commentary
on the topic from myself and from a colleague. I’d be interested in your thoughts too.

I have a confession to make – I’m bored with Agile and XP.

In the mid 80’s I got involved with software methodologies, but my main interest has always been
design. I’m used to building things the engineering way, with two stages – design and build.

Software drawings (e.g. UML) correspond to electrical schematics, but software is not physical so it’s
not obvious how best to represent it in drawings. We use processes to create software from the drawings
but you cannot really say which software process is better than another if they both produce working
code.

In the 1890’s scientific management ideas began, led to Taylorism, and eventually to Lean develop-
ment. There are areas where a single process cannot be defined. For example in health care there are so
many variations in the processes needed by doctors and nurses that you simply can’t define one process
for health care.

Steve McConnell is a thoughtful critic of Agile – I’ve had many talks with him. We each have totally
opposite processes for writing a book. He will make a rough outline and then keep refining it into more
and more detail over a period of 10 months or so. Then he’ll spend maybe 3 months filling in all the prose,
and it’s complete. I just can’t do it that way. My method is to simply start writing prose, and writing more
and more of it. Eventually I organize it into chapters. We’ve both had many best-selling technical books. So
which way is right? Both and neither.

Similarly with software development processes – we cannot measure our output well. Lines-of-code is
meaningless. Our output could be called “Value the customer realizes”. You cannot prove that one soft-
ware technique is better than another. There is a similar problem with the medical system – you cannot
prove that therapy A would benefit a given person better than therapy B. Once they’re given therapy A,
we can’t turn back time and try therapy B in the same person under the same conditions. Therefore we
must make our own judgment based on our own experience and that of colleagues.

A better question to ask is: What makes for a good software design? What is the place of design in
the flow of software work? The Agile community does not separate design and build in programming;
there is a very big overlap.

• You can have programming without design.
• You can have design without programming.
• But it’s better to interleave the two.

As a manager how can you tell whether design has taken place? If you have an explicit design phase,
ok – but is the design any good? If design and build are interleaved, a non-technical manager cannot tell
whether design is happening. Early on, the issue of “programming without design” was addressed by the
Software Engineering community by instituting a separate design phase with reviews held before the
build phase could start. When design and build are interleaved as they are in agile development, it can
appear from the outside to look like the old “programming without design”. I think that’s where some of
the opposition to Agile is coming from.

Volume IV; Issue 1

February 2004
Ask The Experts

Nancy Van Schooenderwoert

Design In Agile Processes

Martin Fowler

Page 60

SWEBOK presents one view of how things ought to be done. But there are many valid ways. The
Smalltalk community blends design and build. The LISP community blends design and build. The Soft-
ware Engineering community separates design from build. In the UNIX/ open source community, design
and build are interleaved and evolutionary – you don’t need to know the end goal. Eric Raymond has
written a book “The Art of UNIX Programming” which records the story of a successful community rather
than tell us all what we should do. We could all do with more examples of what has worked than with
continuing to battle over methodologies.

Testing, Refactoring, and Continuous Integration are the practices XP has to ensure that design gets
done even though there is no explicit design phase. These parctices are meant to ensure that design con-
verges. The real reason that design converges is because someone on the team has the will and skill to
make it happen. You’ve got to have the active desire to look at how the code is coming together and an
active desire to do something about it. Where does the will come from? A demotivated team can’t do it.

For non-technical managers working with Agile teams, how do you tell if design is happening? If no
code is being thrown away, design is probably not happening. If the team is unhappy, design is probably
not happening.

COMMENTARY FROM RON MORSICATO OF XP EMBEDDED:

Martin pointed out Testing, Refactoring, and Continuous Integration as being the practices that make
XPers honest, design-wise. But you can add the Planning Game to that mix. You need to design if you’re
serious about estimating. Although for the most part you’re decomposing requirements into specifications
and specifications into tasks, it’s still a hierarchical design activity that out of necessity will involve some
degree of object oriented analysis. In fact, breaking down the design into smaller and smaller subtasks,
allowing for shorter iterations, is the key to accurate estimation. It follows that if the software team is
estimating accurately, it must be designing. This is another example of how the agile practices reinforce
each other.

In a typical XP room there are design artifacts hanging all over the walls. This means that design in XP
is meant to be visible. These things tend to be marked up, showing that they are living documents and
design is happening with each iteration.

There are situations where it’s proper to do some up-front design in XP, and not expect that all design
will be done after the fact via refactoring. An example is when the project has multiple teams working in
different locations. In this case it may be preferable to do up-front design for the interfaces between
teams. This allows for more communication within teams than between teams. So the bulk of communica-
tion can be done in person. Granted, you lose something if the distributed teams don’t talk as much but
you’re valuing personal communication over electronic communication.

COMMENTARY FROM NANCY VAN SCHOOENDERWOERT OF XP EMBEDDED:

Martin’s thoughts reminded me of the extra things I was constantly doing to keep the design structure
clean throughout my most recent XP project. I knew we weren’t doing as well at testing as we should. Too
often the tests weren’t written before the code, and so developers would then be reluctant to bother
writing them. We did fairly well on Continuous Integration. Refactoring is all too easy to postpone under
the daily pressures of project work, and I was keenly aware of the ugly spots in our code that needed
refactoring. There weren’t a lot of them but they are always malignant. If I couldn’t make time to clean
them up, I was at least determined not to let more cruft build up on top of them.

The truth is that even if we were doing a perfect job on those XP practices, I probably would still do
my “extras” to watch out for the design. These things included:

Volume IV; Issue 1

February 2004
Design In Agile Processes

Martin Fowler

Page 61

• Creating a high level diagram of the current software design, and how it should look at the end
of the current iteration – just a single page sketch. It allowed developers to absorb the ideas at their
own pace, and gave us a means to talk about design.
• When bugs were found during integration or later, I kept a log and wrote up a description of how
the bug got created. This usually pointed either to lax practices or a design faux pas.
• When code comments weren’t sufficient to document a complex area of the code, I created mini
documents – one page explanations of the feature that leaves the details to the code and just covers
enough for a developer to recall the design concept.
• Have a brief review of the design approach developers were using when estimating new stories.

Most members of my team were inexperienced in one or another skill, and they were eager to learn
more about software design. The combination of practices worked well to help them learn without
getting overwhelmed.

Is it possible for a team to follow XP’s practices alone, and have a design fail to emerge from the
activity? I cannot answer that question from my own experience. Maybe I should re-phrase the question:
“...have a good design fail to emerge...”. Martin seems to think so. I did extra things to ensure a good
design. I might not have needed to if I had had a more seasoned team. But that confirms Martin’s point:
that it is individuals with the will and the skill who ultimately make sure good design happens.

As an “Agile Evangelist” in several different organizations, I have often found the most difficult chal-
lenge is to win the support of senior level management. To me, it is clear that the so called traditional
processes are insufficient to handle the rapid pace of change in both the technical and business environ-
ment of today. However, for many other executives there is a perceived safety in following these ap-
proaches. In order to influence such executives I often need to reference other “objective” third party
information so that it does not seem like I am simply presenting my own unsupported opinions.

Upon review of the first draft of this article, a colleague pointed out the contradiction in the use of the
concepts of evangelism and objectivity in the preceding paragraph. He pointed out that evangelism of a
particular process or technology often distracts us from our real (professional) purpose which is to deliver
software that is useful to the businesses we serve. The very idea of such distraction is un-Agile at its core,
so how can I be an “Agile Evangelist.” It was difficult to reconcile the contradiction, but just as I was about
to give up, I considered the values put forth in the Agile Manifesto. I value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan”

I don’t see adherence to these values as a conflict with serving my business. By being true to the first
value alone, I cannot allow a process to distract me from delivering the best possible results to my business.
I am comfortable evangelizing these values.

As a community we must sell our values at the senior management/executive level in order to truly
succeed in our mission of “uncovering better ways of developing software”. While bottom-up initiatives to
introduce Agile practices are a good start, top-down support is vital to the successful mainstream adoption

Volume IV; Issue 1

February 2004
Design In Agile Processes

Martin Fowler

Selling Agility To Senior Management

Scott Bogartz

Page 62

of Agile values. Top-down support is required for a variety of reasons.

A primary reason for the need of top-down support is the impact that adopting Agile values has
across the entire organization. Product management is one of the most heavily impacted areas, perhaps
even more heavily than product development. In an Agile organization, product management has to
accept much more accountability for the ultimate delivery of a product than in a traditional environment.
Product management must be willing and able to make clear cut priority decisions, stay actively engaged
with the development team and have the fortitude to actually release the product at some point. This
requires a strong mandate from senior management. Downstream areas like publications, training,
support and marketing are also impacted by the adoption of Agile values by the development group.
These groups are used to having a pre-defined plan (specific feature set to be available on a specific
date) to which they manage. With Agile values, the full feature set of a product may not be known until
much later in the game, and this causes anxiety in the downstream areas. Agile activists observe that
traditional approaches provide only a false sense of predictability to the downstream areas, so they really
need to be more flexible regardless. However, the downstream areas must be strongly encouraged
towards (and mentored in) a more priority driven, incremental approach. Again senior management is
needed to provide such direction.

As an “Agile Evangelist” in several different organizations, I have often found the most difficult chal-
lenge is to win the support of senior level management. To me, it is clear that the so called traditional
processes are insufficient to handle the rapid pace of change in both the technical and business environ-
ment of today. However, for many other executives there is a perceived safety in following these ap-
proaches. In order to influence such executives I often need to reference other “objective” third party
information so that it does not seem like I am simply presenting my own unsupported opinions.

Upon review of the first draft of this article, a colleague pointed out the contradiction in the use of the
concepts of evangelism and objectivity in the preceding paragraph. He pointed out that evangelism of a
particular process or technology often distracts us from our real (professional) purpose which is to deliver
software that is useful to the businesses we serve. The very idea of such distraction is un-Agile at its core,
so how can I be an “Agile Evangelist”. It was difficult to reconcile the contradiction, but just as I was about
to give up, I considered the values put forth in the Agile Manifesto. I value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan”

I don’t see adherence to these values as a conflict with serving my business. By being true to the first
value alone, I cannot allow a process to distract me from delivering the best possible results to my business.
I am comfortable evangelizing these values.

As a community we must sell our values at the senior management/executive level in order to truly
succeed in our mission of “uncovering better ways of developing software”. While bottom-up initiatives to
introduce Agile practices are a good start, top-down support is vital to the successful mainstream adoption
of Agile values. Top-down support is required for a variety of reasons.

A primary reason for the need of top-down support is the impact that adopting Agile values has
across the entire organization. Product management is one of the most heavily impacted areas, perhaps
even more heavily than product development. In an Agile organization, product management has to
accept much more accountability for the ultimate delivery of a product than in a traditional environment.

Volume IV; Issue 1

February 2004
Selling Agility To Senior Management

Scott Bogartz

Page 63

Product management must be willing and able to make clear cut priority decisions, stay actively
engaged with the development team and have the fortitude to actually release the product at some
point. This requires a strong mandate from senior management. Downstream areas like publications,
training, support and marketing are also impacted by the adoption of Agile values by the development
group. These groups are used to having a pre-defined plan (specific feature set to be available on a
specific date) to which they manage. With Agile values, the full feature set of a product may not be
known until much later in the game, and this causes anxiety in the downstream areas. Agile activists
observe that traditional approaches provide only a false sense of predictability to the downstream areas,
so they really need to be more flexible regardless. However, the downstream areas must be strongly
encouraged towards (and mentored in) a more priority driven, incremental approach. Again senior
management is needed to provide such direction.

Also, senior management must be willing to stay the course. While adopting Agile practices is a logical,
common sense step for many organizations, it is not always an easy one. The first few projects may
encounter turbulence, and if senior management is not fully supportive the organization may slip back
towards the imagined safety of more traditional methods. In more than twenty years, traditional meth-
ods have produced more failure than success, so organizations should not be easily deterred from experi-
menting with new approaches.

The purpose of this section is to provide a forum for exchanging information that will help members of
this community promote Agile values at the top management levels of their organizations. As Scott
Ambler discusses in his article “Proof Positive” (Software Development Magazine, November 2003), the
hard proof that senior management often demands about the benefit of Agile methods is beginning to
emerge. I invite those involved in, or aware of, empirical studies of Agile practices to provide summaries
and links to additional information here. Since, as Ambler also discusses, it may be many years before
there is enough empirical data to be considered definitive, I also invite contributors to provide philosophical
arguments and/or anecdotal evidence of the benefit of agility. In fact, there is a significant argument to
be made that after more than twenty plus years of mediocre results, the traditional methodologies must
be justified against new approaches instead of the other way around. Again, I invite articles along these
lines. Since we value results over process, we must be willing to discuss situations in which Agile methods
(at least as they exist today) are not applicable. Such discussion might lead to new approaches that
embody our values or enlighten us to other practices and values that we have not considered.

My goal is that the information provided in this section helps the members of this community advance
our values to the “outside world”. I would like to spur members to think about the issues in new ways,
provide proof of value to those who need it or just give a member the confidence to present his or
her ideas to senior management. The first article for this section is my own, and it is philosophical in nature.
I look forward to collecting and presenting your submissions in the future.

ABOUT THE AUTHOR

Sott Bogartz is the Director of Data Products Development at Reed Construction Data in Norcross, GA.
He is an experienced software developer, architect and project manager whose background includes
consulting and in-house development. He is also a Certified Scrum Master, an XP practitioner.

Volume IV; Issue 1

February 2004
Selling Agility To Senior Management

Scott Bogartz

Page 64

Do you have a Scrum Success Story to share? Have you found an interesting or novel way to apply
Scrum to a non-software project? Perhaps it’s a spectacular failure, but one that we could learn from. If so,
send it to Michael Ivey mdi@iveyandbrown.com for possible inclusion in a later edition of this column.

At Ivey & Brown, we’ve had some success with an alternate approach to “fixed-price” projects and
Scrum. The technique we’ve been using specifies a price on each sprint (instead of one price for the whole
project), and has the added benefit of immersing customers in Scrum.

The traditional approach to fixed-price Scrum projects could be called “maximum-cost, latest-date.”
This variation of “fixed-price, fixed-date” gives customers the most important functionality up front, and
offers them the opportunity to substitute any new feature for a feature that hasn’t been started that is of
equal estimated effort. With this method, customers can halt development before completion if they feel
the project is “good enough.”

In projects like these, the level of exposure to the behind the scenes Scrum process varies from customer
to customer. Sometimes customers don’t know (or care) what process the developer is using, and some-
times customers know they are playing a role called “Product Owner” but not much else. Customers on
fixed-price projects are usually not fully involved in the workings of Scrum.

We at Ivey & Brown wanted a way to involve our customers more in the Scrum process and still give
them a fixed price. In one particular case, we had a customer who had a large number of rapidly chang-
ing requirements and virtually no time to prioritize and specify those requirements. This customer also
didn’t want to spend a lot of money at one time, so we would only have a few part-time developers
working on the project. We identified a Product Owner who took on the responsibility of managing all of
the fluctuating priorities and items for the Product Backlog. At the beginning of each Sprint, we ask, “How
much do you want to spend this month?” Based on the answer, our team selects an appropriate amount
of work from the Product Backlog. Instead of the usual negotiations over price, the customers set the price,
and therefore the pace. If one month they want to spend a mint, they get a lot of new software. If the
next month they only want to spend a couple hundred dollars, they can get a little bit of software. It’s
completely up to them.

Of course, this won’t work in every situation, but “fixed-price” sprints are certainly an option if you
come into contact with customers who have circumstances similar to the above.

Volume IV; Issue 1

February 2004
Scrum Success Stories

Michael Ivey

Scrum Success Stories

Michael Ivey

Page 65

“Drop wisdom, abandon cleverness, and the people will be benefited a
hundredfold …See the Simple and embrace the Primal” –Tao Teh Ching

Over twenty-five-hundred years ago, the Chinese philosopher Lao Tzu wrote the Tao Teh Ching, a
‘guidebook’ for achieving happiness by living in harmony with the universal laws of nature. To Lao Tzu,
the best way to live a contented life was to understand these laws, and make the best of the circum-
stances which they created. The more man interfered with these laws the more unhappy he became. By
imposing abstract and arbitrary rules, leaders set the stage for strife and struggle instead of teamwork
and success.1

This article examines the “natural laws of software development” and how man’s interference with
these laws has also caused much suffering by preventing the successful completion of many projects. It
provides high level insight into how the practices of Agile development2 more closely mirror the natural
laws than do the dogmatic approaches of more traditional methodologies. The use of philosophy and
“natural laws” to describe best practices for software development is a somewhat whimsical idea and is
intended to present a more interesting twist on the information. However, there are more serious under-
pinnings for this approach. Software development is an activity built upon complex, interdependent
relationships that mirror those within a natural organism or ecosystem. It may not be too far fetched to
propose that such an activity is governed by a set of natural laws. A similar argument can be made for
the applicability of philosophy to the study of software development. Interactions between humans, and
the manner in which different humans interpret a given set of information, are the factors that drive
software development. A philosophical view delves into those factors.

This article does not attempt to provide hard proof of the benefit of Agile methods. The assertion is
that in many organizations, the case for continuing to follow the same old practices requires more justifica-
tion than the one for trying something radically different. It is a fairly well documented fact that the
traditional methodologies have done little to improve the reliability and predictability of professional
software development. Studies indicate that nearly two-thirds of all software projects either fail to deliver
at all or substantially overrun their cost and/or time estimates.3 These statistics offer proof that the tradi-
tional methodologies are not in harmony with the natural flow of software development. A less tangible,
but no less interesting, indication of this divergence is observed in the writings of the thought leaders of the
Agile movement. The use of the word “uncovering” in the opening statement of the Agile Manifesto is
highlighted as a deliberate and fascinating selection by Jim Highsmith and Martin Fowler. 4 While the
stated intent of this selection was to indicate that the process was still in process, one can infer deeper
meaning from the choice of uncovering instead of other verbs like creating, inventing or crafting. The use
of uncovering suggests that that the Agile methodologies are helping to remove the clutter that has ob-
structed our view of the “better ways of developing software” that have existed all along. This theme of
returning to a better approach (instead of creating a new one) is also repeated in introduction of Agile
Software Development with Scrum. While the Agile methodologies are often described as radical in
relation to the traditional methodologies, the Agile methods are really more common sense than revolu-
tion. They represent a return to the natural approaches that have been obscured over the past 20 years.

SEEKING WISDOM AND CLEVERNESS – THE MYTHS OF TRADITIONAL METHODOLOGIES

Just because there is a natural flow of software development, does not mean that software develop-
ment is easy or that anybody can do it well. The natural flow of software development does not always
lend itself to the business needs of a software organization. It is natural and legitimate for a business
manager to want to know what features will be in a product by what date and at what cost. Even for
those with a very deep understanding of the natural flow of software development it is very difficult to

Volume IV; Issue 1

February 2004
Agile Methods: The Tao Of Software Development

Scott Bogartz

Page 66

provide this kind of information with any degree of accuracy (at least beyond a few weeks into the
future). As we will discuss later, those who do understand the flow know how to manage the process to
make the best of this situation.

The traditional methodologies set out to fight against the inherent uncertainty of software develop-
ment. They asserted that they could provide concrete answers to the vexing questions and increase
development productivity at the same time. A cynical view of this approach is that these methodologies
were created for the commercial gain of their owners and not for the greater good of the industry. A
process that claimed “we can answer all of those difficult questions” was much easier to sell than one that
admitted “we cannot answer all of the difficult questions, but we can tell you to make the best of the
uncertainty.” A more forgiving explanation of the traditional methodolgies’ attempts to impose control on
the software development process is that they were born of manufacturing management practices. The
early methodologists, for example “Big 6” consultants,5 were heavily influenced by manufacturing prac-
tices. In addition the clients who first attempted to apply these methodologies were mostly manufacturers
looking to improve the software they developed for internal use. Since the manufacturing process could
be controlled very precisely, it must have seemed logical that similar practices could be applied to software
development.

Unfortunately, software development is very different from manufacturing (at least as it was prac-
ticed when the traditional methodologies were born). Where manufacturing mass produces identical units
after they have been concretely defined and completely designed, software development starts with a
high level concept and customizes a solution around that concept. More importantly manufacturing is best
optimized by improving task efficiency while software development is much more dependent upon
creativity, communication and problem solving. Many of the techniques that can be used to increase task
efficiency either have a neutral or adverse effect on tasks that require intense problem solving. For ex-
ample, adding more people to perform the tasks in a manufacturing effort can be a very good way to
speed up production. However, due to the complex interrelationships of the tasks and the need for
communication among team members adding more people to a development effort often slows down
software development.6

Flawed as they were in their assumptions about the nature of software development, the traditional
methodologies offered answers to a desperate industry, and the industry bought in to their promises. This
combination of circumstances gave birth to a number of myths about software development, and the
myths over time became conventional wisdom.

Probably the most significant myth is that of predictability. The statistics mentioned in the introduction
of this paper demonstrate that traditional methodologies do not deliver on their promises of predictability.
A very good software development team might be able to accurately estimate a month’s worth of effort
after working together on the same problem space and technology for some time. However, managers
have been led to believe that an entire project can be accurately estimated. This disconnect leads to
serious psychological problems across the organization. Developers may pad estimates to make up for the
known uncertainty. Managers become wary of high estimates or past failures, and pressure teams to
“come up with better numbers”. Mistrust and apathy are commonplace. While developers may initially
feel guilt about missed deadlines, any motivating effect of this guilt quickly reverses itself as the developers
begin to feel they are always up against unreasonable deadlines based on inaccurate estimates.7

Another damaging myth created by the traditional methodologies is it is possible to completely ana-
lyze and design a software product (with non-software artifacts) before beginning to actually construct
that product. The traditional methodologies pushed paper based deliverables as the primary means of
understanding and specifying a system. These documents were used as the basis for estimating the

Volume IV; Issue 1

February 2004
Agile Methods: The Tao Of Software Development

Scott Bogartz

Page 67

development effort and were typically seen as a “hand-off” from the business specialists to the technical
team. Again, this myth was born of the manufacturing background of the traditional methodologies. In
manufacturing it is typical to have a completely accurate specification before mass production begins.
However, for most complex products the design process involves much more than just documentation.
Typically the process involves the creation and refinement of prototypes of these products. These proto-
types allow analysts, designers, and customers to interact with the product, identify previously misunder-
stood requirements, and adjust priorities based on feedback. The traditional methodologies used the
concept of analysis and design without using the same level interactivity. The benefits of a purely paper
based analysis and design diminish quickly, and the traditional methodologies overly emphasized these
activities without paying enough attention to the more productive interactive techniques (prototyping).

EMBRACING THE PRIMAL – THE AGILE ANSWERS

Where the traditional methodologies struggle against the inherent complexities of software develop-
ment, Agile methods tend to adapt to them. Agile methods do not try to force software development to
be predictable. Instead they provide organizations with a means to achieve the best possible results given
the unpredictable nature of the activity. This does not mean that the results of an Agile development
effort are totally unpredictable. With an Agile method, you can be confident that highest priority features
identified at a given point in time are the ones which will be completed first. This way it is easier to
manage scope as a release date approaches in order to hit the date (with your highest priority features if
not all that you originally envisioned). Also, Agile methods do not try to use “complete” paper based
analysis and design to conquer the intricacies of human to human (and human to system) interaction.
Agile methods do not advocate abandoning design. Instead they encourage more natural and productive
design activities by increasing the interaction between customers, developers and the system.

CONCLUSION

As we move to introduce Agile practices into new environments we must be prepared to overcome a
variety of objections. While many of these concerns and requests for hard evidence about the value of
Agile practices are legitimate, we must recognize when the basis of an objection is the myth of another
approach instead of its reality. We must not give in to the pressure and try to sell our approach as a way
to conquer the complexity of software development. In admitting that we cannot eliminate this complex-
ity, we establish our honesty and realism. From this base of understanding, we can help our organiza-
tions move towards adapting to the natural laws instead of fighting against them.

FOOTNOTES
1 Hoff, Benjamin, The Tao of Pooh, pp. 4-6, E. P. Dutton, Inc., 1982
2 While terms such as Agile development, Agile methods and Agile practices are used interchangeably throughout
this article in general reference to the various processes currently defined under the Agile umbrella, they should be
considered in broader terms to refer to any practices that reflect the core values expressed in the “Agile Manifesto”.
3 Schwaber, K and Beedle, M, Agile Software Development with Scrum, pp. 1-2, Prentice Hall, 2002
4 Fowler, M. and Highsmith, J., “The Agile Manifesto,” Software Development, 9(8): 28-32, 2001.
5 Schwaber, K p. 107
6 Brooks, F, The Mythical Man Month, p. 19, Addison–Wesley 1995
7 Schwaber, K. p. 100

Volume IV; Issue 1

February 2004
Agile Methods: The Tao Of Software Development

Scott Bogartz

Page 68

In 2001, the Agile methodologists had great stories to tell about coding, team organization, and inter-
action with the business world. With the exception of unit testing in XP, testing thinking noticeably lagged
behind. What’s the state of things today?

Let me illustrate my impressions by referring to the high-tech adoption curve that marketing guru
Geoffrey Moore describes in Crossing the Chasm. For him, adoption starts with technology enthusiasts who
try things out because they’re cool. They’re not bothered that those things don’t actually work well. The
visionaries listen to the enthusiasts in order to hear about new technologies that can lead to order-of-
magnitude improvements in their business. They are the ones who force the technologies to work. After
the visionaries comes mainstream adoption by pragmatists who want incremental improvements and
assurance that the technology works. There are two later stages that don’t concern us here.

Test-driven code development (TDD) has made it to the pragmatist stage. Evidence? Here are
three titles on my bookshelf: Test-driven Development: A Practical Guide (Astels), Test Driven Develop-

ment: By Example (Beck), and Pragmatic Unit Testing (Hunt and Thomas). TDD is being taught in
university classes. Support is integrated in at least the Eclipse and Intellij IDEA development environments.
TDD is safe technology: not universal, but adopters need not be pioneers.

Importantly, the role of testing in TDD is shifting. It’s by now a truism that test-driven development is
more about thinking through a design by way of examples than it is about finding bugs. People are
exploring how tests help communication, team alignment, and documentation. They’re embedding testing
into the larger development process, rather than considering it a thing apart.

Visionaries are experimenting with test-driven product design. How can business experts, testers,
and programmers collaborate to produce examples that drive entire iterations? As was the case with test-
driven code design (which gained critical momentum with the release of JUnit), tool support has been a
motivating force. Many are experimenting with Ward Cunningham’s FIT table-driven testing tool
(fit.c2.com). Along the way, they’re learning more about how business experts can collaborate with
development teams.

Exploratory testing is the province of the technology enthusiasts. James Bach defines exploratory
testing as “simultaneous learning, test design, and test execution”. Unlike the previous two techniques, it’s
done after the fact, when there are finished features to play with. My limited experience leads me to
think that exploratory testing fits nicely as part of closing up an iteration: demonstrate this iteration’s
progress to interested bystanders, have the whole team and those bystanders explore the new features,
move on to the end-of-iteration retrospective, then prepare for the next iteration.

Exploratory testing seems a good match for the reactive and improvisatory nature of Agile projects.
Programmers seem to enjoy it, so long as it’s clear that exploratory discoveries are potential tasks for later
iterations, not punishments for mistakes in the last iteration. (Programmers should not be chastised for not
doing what no driving tests told them to do.) To learn more about exploratory testing, I recommend James
Bach’s articles at www.satisfice.com/articles.shtml.

A variety of test sub-disciplines like configuration testing, load testing, usability testing, and the like
seem much the same in Agile projects as in conventional projects. This non-functional, para-func-
tional, or “ility” testing is either solidly established in the pragmatist stage or it awaits a technology
enthusiast to find a new approach.

2003 was a year of great activity in Agile Testing. 2004 promises to be even better.

Volume IV; Issue 1

February 2004
Testing Tips

Brian Marick

Page 69

This issue of the Agile Times Newsletter marks the beginning of a regular section that will discuss issues
and experiences around the topic now called “Embedded Agile”.

EMBEDDED SOFTWARE – JUST DIFFERENT

Developing software on embedded platforms (also known as “firmware”) has always been consid-
ered different from “traditional” software development. Some of the reasons make sense, namely:

1. Embedded systems are function specific and usually unique.
2. Embedded programmers are not normally classically trained programmers. Many, like myself,
have degrees in Electrical Engineering. This is because knowledge of electronics can be essential or at
least very beneficial to an embedded programmer.
3. The amount of code on a typical embedded platform is usually smaller, often dramatically so.
4. Real time constraints often put performance at a very high premium.
5. Code space limitations (and item #4) often lead to frequent hand coding in assembly language
and other compromises.

Embedded Systems Programming magazine reported that in 2002, “6 billion processors of all types
were sold (and) … only about 100 million (just 1.5%) became the brains of PCs, Macs, and UNIX worksta-
tions; the rest went into embedded systems.”. This does not mean that 98.5% of all software written is for
embedded platforms. It’s likely that most software written is for non-embedded applications. Still, there
appears to be a lot of embedded software out there.

Further, I have noticed that embedded programmers tend to be reluctant to adopt a lot of the tradi-
tional tools of software professionals. I was around when C compilers were first being used on embedded
platforms and the phrase “pulling teeth” really understates the unwillingness of embedded developers to
adopt a high level language. Items 4 and 5 above drive the rational part of this mind-set. Much of the
aversion is, however, irrational. If you know of an embedded programmer with the hiccups, sneak up
behind him and shout “C++!.” The ensuing anxiety attack should cure him. So here then is the paradox:
While traditional software developers often seem irrationally eager to adopt the next new thing, embed-
ded programmers are often irrationally averse to anything new. That is why both groups need good
managers.

It should come as no surprise, then, that the level of experimentation and adoption of Agile practices is
much less common in the embedded world. The following table lists the Google hits generated when
certain things are typed in:

• “Extreme Programming” + software 177,000
• “Extreme Programming” + embedded 22,200
• “Extreme Programming” + firmware 1,640

Note that the word “Agile” it a bit too generic to yield meaningful results, but when I typed in “Agile
embedded” I got exactly 3 hits and 2 of them had nothing to do with this topic. Also, a brief survey of
yahoo user groups yields dozens of groups devoted to things Agile (mainly XP) with thousands of mem-
bers. However, as far as I can tell, there is precisely 1 user group devoted to the topic of applying Agile
techniques in the embedded world and it has exactly 20 members. Truly, then, the Agile ball has yet to
really start rolling in the embedded domain.

WILL IT WORK?

There is every reason to believe that Agile techniques will be as successful in the embedded domain as
they are in the traditional programming environments. There is a lot of parallelism in the challenges and

Volume IV; Issue 1

February 2004
Agile Embedded: The Ground Floor

Dan Pierce

Page 70

frustrations faced by both groups. First and foremost, the embedded environment is just as prone to ever
changing and evolving requirements as any other engineering field. Predictably, embedded personnel are
just as likely to conclude that change is an unpleasant, expensive thing and take steps to legislate it away.
Merely declaring that change is not allowed fails as miserably for us embedded folk as it does every-
where else. Here then is the heart of the debate. Traditional project management holds that change is
not inevitable, it can be eliminated with careful up front analysis and design. Agile claims that change is
inevitable so project work should be driven by techniques to make change cheap. This includes:

• Regular delivery of a working subset of the system. This serves as the best catalyst to uncover the
true set of requirements and give us great feedback on our proposed solution. The faster we know
these things, the less the cost of the project.
• Invest heavily in software that is architected to be flexible and agile when change comes along.
This drives down the cost of changing the software.
• Invest heavily in automated testing to produce fast, high quality feedback on the quality of our
work. This drives down the cost of testing.
• The non-software portions of the project should be designed with flexibility around the high risk
and least known aspects of the system. This drives down the cost of changing them.

One of the great things to come out of the Agile movement is that it has turned all of us down to earth
engineer types into philosophers, namely epistemologists2. Agile folks are normally a happy and optimis-
tic bunch, but we are very proud of our epistemological skepticism. Agile philosophy observes that all
decisions on a project are made with imperfect information. Further, we claim that our information is
most imperfect at the beginning of the project, and the picture will get clearer with each passing day. If
this is true then is does seem nonsensical to insist on hard decisions for all aspects of the project at the
beginning. Traditionally, though, this has been the strategy to minimize, and blunt the impact of, change.
As Jim Highsmith has said, “Agile managers understand that demanding certainty in the face of uncer-
tainty is dysfunctional1.” Also, Agile claims that discussion and documentation are poor predictors of
requirements validity and tell you little about the integrity of the proposed solution. Only by building the
system can we uncover the flaws in our up front thinking.

Lest you think that uncertainty is something that only plagues engineering, note that the problem exists
at the highest levels of government:

“…because as we know, there are known knowns; there things we know we
know. We also know there are known unknowns; that is to say we know there
are some things we do not know. But there are also unknown unknowns — the
ones we don’t know we don’t know.” -Donald Rumsfeld

That’s easy for you to say, Mr. Secretary.

BUILDING THE HARDWARE ALONG WITH THE SOFTWARE

The particular point that seems to get raised immediately when I discuss implementing Agile in an
embedded domain is that fact that quite often the hardware is being developed in parallel with the
software. To a large extent, I think this is the biggest difference. For if the hardware is already finished
and known to be good, then it seems to me that you have a pure software effort and all theory regard-
ing best practices and methods that apply to any software effort should apply. You might have different
priorities, especially items #4 and #5 above, but all in all this scenario parallels traditional software devel-
opment very well. It is when the project starts with no hardware and no software that things get meaty.
Unsurprisingly, the instant reactions to applying Agile techniques in this situation are as follows:

• “Hardware is much more expensive to change later, so we must do our homework up front”

Volume IV; Issue 1

February 2004
Agile Embedded: The Ground Floor

Dan Pierce

Page 71

• “The lines between what is a hardware and what is a software requirement is vague and
interdependent, so all must be decided up front”

Piffle. Mary Poppendieck2 has done a tremendous job of refuting all of these arguments. I asked her this
specific question and this is what she had to say:

“I am convinced that people who think intelligent hardware systems are developed
waterfall-style haven’t developed many of them. Very often when such a system
is being developed, the hardware is on the bleeding edge of known technology.
This is certainly true of weapons systems and cell phones, and quite often it is true
of medical instruments. The idea that the hardware is designed ‘up front’ rarely
matches reality.”

On the other hand, it is true that hardware design gradually gets more fixed and formal as time goes
on. Thus you can’t do the kind of refactoring at the end of a hardware design cycle that you can do at
the end of a software design cycle. I think that the best hardware design starts with a lot of options and
big tolerances, and then narrows the funnel as development proceeds. Thus you have to gradually in-
crease the formality of the software design as the hardware design gets closer to being fixed.”

She describes in her work how the Japanese were able to drive down the cost and time of developing
a new car by using this technique. That is, they started new designs with big tolerances in the areas that
were predicted to be most likely to change and gradually narrowed their tolerances as time went on.
This is why the Japanese were able to compete better in the ‘80s than American car makers. Now all
cars are developed this way. Needless to say, if a car can be developed without deciding everything up
front, and if such a technique can dramatically lower the cost of development, then surely the same
technique will work with the electronics on an embedded project.

PROJECT PLANS ARE FINE

There is a well-known axiom attributed to Dwight Eisenhower that goes “War plans are fine, until the
fighting starts.” Because of this, some have concluded that Eisenhower was a critic of war planning.
Ironically, this was not the case. As a general and as a president he supported vigorous military planning.
At the same time, though, he knew the limitations of such planning. He knew that war plans needed
large amounts of flexibility and a smart, empowered chain of command to make fast battlefield decisions
based on new information that was being obtained on a minute-by-minute basis. There are many other
examples of situations that must be managed this way. Coaching a football game requires much up front
planning, but those plans can often get turned upside down or thrown out altogether on the first play of
the game. Management of this type requires much elasticity, many options, and good, quick feedback on
the merits of any approach.

This, then, is what it means to be Agile. To manage your project as if surprising, new information will
present itself at any moment and must be worked into the plan. To manage as if the up front plan was
created by flawed, imperfect beings who do not have the benefit of hindsight. Embedded projects have
all of these characteristics, and I am convinced these techniques when applied enthusiastically to the
embedded domain will yield the same spectacular results that other fields are seeing. Let me close by
plagiarizing Dwight Eisenhower and offer the following axiom:

Project plans are fine, until development starts.

This section of the Agile Times Newsletter will gather experiences and discuss the issues surrounding
implementing Agile techniques in the embedded domain. This edition contains three such articles. If you
would like to share your real-world experience or wisdom, please contact me at
dan@embeddedeng.com.

Volume IV; Issue 1

February 2004
Agile Embedded: The Ground Floor

Dan Pierce

Page 72

About five years ago I was technical software lead for an embedded project that I and my team
transitioned over to XP. The move was successful, but that success depended on the state of the project
beforehand. I’ll give some background on the project, then explore the success factors.

PROJECT SETTING

Our challenge was to build a mobile ruggedized spectrometer, using a new board, new sensor hard-
ware, new CPU (final silicon net yet available), operate two communications protocols simultaneously,
and fit the architecture into a partner company’s existing architecture (a network of communicating
instruments). Oh, and implement a very sophisticated mathematical algorithm that was still under devel-
opment and would be changing all through the project and afterwards as well. End users would receive
periodic updates to the algorithm in the form of calibration tables.

We were about a year and a half into development of the spectrometer when I learned about XP
and wanted to try it. We had created unit tests for most of the modules we wrote but they weren’t
automated. The software could be run on the target CPU and also on top of Windows NT, to isolate
hardware problems. I had successfully instituted collective ownership of the code, and had communicated
the overall design vision to everyone on the team. They all understood how the code they were writing
fitted into the big picture. We were using code reviews, coding standard, continuous integration, and had
easy access to our customer.

Prior to adopting XP we were not doing anything like the Planning Game. Requirements came from
multiple sources, and there wasn’t the sense of accomplishment you get when you have a clear, achiev-
able release goal and you all focus tightly on it. Pair Programming and Test First (now TDD) were missing.
Refactoring was being done but not enough.

SUCCESS FACTORS

1. Dual Targetting

Our application ran on a desktop PC as well as on the target CPU. We maintained this capability
throughout development, even after we had good hardware. With so many hardware components at
early stages in their own development, we simply could not risk having to troubleshoot with multiple
unknowns. This would have been tough for the most seasoned people, but half the team were new to
embedded work and would’ve been overwhelmed without the ability to quickly isolate hardware
problems. We were using Nucleus PLUS operating system which comes with a version of the OS that runs
on top of Windows NT. This allowed us to fully exercise the application logic on WINNT before moving to
the target CPU. The interface between the OS and our application was the same for both platforms –
we’d just have the build link in one or the other library. Dual Targetting isn’t a defined XP practice, but I
nominate it as a practice for Embedded XP. Without it we’d have been lucky to finish the project at all,

ENDNOTES

1. Highsmith, Jim, What is Agile Software Development, Crosstalk, The Journal of Defense Software Engineering,
October, 2002.

2. If you are unfamiliar with her work, you should stop reading this immediately and go read everything you can.
A lot is available for free on www.agilealliance.com and www.poppendieck.com

I have yet to buy her book and I am hoping that flattery such as this might garner me a free copy!

Transitioning To XP In An Embedded Environment

Nancy Van Schooenderwoert

Volume IV; Issue 1

February 2004
Agile Embedded: The Ground Floor

Dan Pierce

Page 73

2. People - the Right Stuff

A spirit of cooperation among the team members cannot be underestimated. Without it, these crucial
practices would have been undermined: Coding Standard, Collective Ownership, Code Reviews, Continu-
ous Integration, Metaphor. One can argue that these are not prerequisites to adopting XP – they are XP, a
big part of it at least. My point here is that you need a team capable of these practices. If there is interper-
sonal strife going on, it has to be solved. We didn’t have this issue but if we did and couldn’t solve it, there’s
no way we could do XP.

3. Unit-Test Code Already in Place

At the time we changed to XP we had a large amount of the code in place. It’s final size was approxi-
mately 30,000 lines (comments excluded). If we hadn’t already written good unit tests for most of this
code, there was no way we could’ve found time to add it at that point. I know now that I can bring
legacy code to an XP project, but it would have been just too big a hurdle then. I was learning XP, trying
to teach others XP, and the company culture was big-process waterfall mentality. Without those unit tests
in place our move to XP would have failed.

The only other practices we were doing before XP that I haven’t ranked here are these:

Trouble Log: A “bread crumb trail” that’s always “on” so it doesn’t distort your troubleshooting by
having to be enabled.

Stand-alone Module Execution: Each loosely-coupled domain of the application should build and
execute alone on either target. For example, we had a serial communications domain (made up of many
functions) and we could build the embedded system with only this domain running – by sending it mes-
sages and commands we could find out whether delays were in the serial communications other parts of
the system. This capability for isolating problems at the domain level is useful in any software system, but it
can be critical to troubleshooting an embedded application. Likewise for the trouble log.

The above are my other nominees (in addition to Dual Targetting) as practices for Embedded XP.
They are not new. Most of XP is not new either, just amazingly effective.

REFLECTIONS

When I began this piece, I was going to rank the Unit Tests first, Dual Targetting second, and People
third. On reflection, they all moved position. In my team’s situation, the Dual Targetting was essential. But
it wouldn’t be for a system with stable hardware. Because we had a lot of code in place before moving
to XP, the existing Unit Tests were very important to our success. Again, that’s more to do with our situa-
tion and trying XP for the first time. It’s not a universal principle. That leaves the People issue. That does
apply universally.

It’s not surprising that we were able to transition to XP, given that our existing practices were essen-
tially a subset of XP – the right subset. For our situation, anyway. What does this mean for other projects?
Is there some test one can apply to tell whether a given existing project can transition successfully to XP?
Aside from having a harmonious team, the key issue is testability. Whatever the state of the software and
hardware, can it be made testable? That question has an extra dimension when you’re talking about
embedded software. Sufficient testability cannot usually be achieved by just adding software unit tests
(assuming you have the time). The hardware may not have the necessary hooks. Can the software
generate a CPU reset? Are there spare I/O lines so you can monitor selected activities using an oscilloscope?
Are there spare interrupt lines? No matter what hardware “hooks” I might mention, they won’t apply
universally because embedded systems vary so much.

Volume IV; Issue 1

February 2004
Transitioning To XP In An Embedded Environment

Nancy Van Schooenderwoert

Page 74

That leaves “testability” as a quality to be judged by the engineers involved. How much testability is
necessary to make your system Agile? Can that testability be achieved? Do you have the time and re-
sources to achieve it? No easy answers. That’s embedded development.

BIO

Nancy Van Schooenderwoert is a founder of XP Embedded, a consulting company dedicated to
bringing Agile practices to the development of embedded software and large-scale real time software
systems. She brings a systems perspective to software engineering for real-time and embedded systems.
She has extensive experience in building large-scale, real-time systems for flight simulation and ship sonars,
as well as software development for safety-critical applications such as factory machine control and
medical devices. Nancy has held positions in electrical, systems, and software engineering, as well as in test
design. She has a BS in Computer Engineering from RIT and a private pilot’s license. Contact: nancyv@xp-
embedded.com; website: http://www.xp-embedded.com

A common problem facing embedded software engineers is the concurrent development of hardware
and software. The embedded software engineer does not have a test bed for their work often until late
in the project. I have seen too many project plans that show an integration and test phase late in the
project where hardware and software are brought together. Those integrations usually end up turning
into seemingly endless debug sessions. We may tell ourselves that this project will be different, that we can
integrate, test and ship in two weeks. But we’d be kidding ourselves.

Embedded systems expert Jack Ganssle says “The only reasonable way to build an embedded system
is to start integrating today… The biggest schedule killers are unknowns; only testing and running code and
hardware will reveal the existence of these unknowns.”[GANSSLE] Jack goes on to say that “Test and integra-
tion are no longer individual milestones; they are the very fabric of development.”

Does the lack of the target platform mean we cannot test our code? Does that keep us from follow-
ing Jack’s advice and the advice from the Agile development community? The answer to these questions
is a resounding “No!”. In this article I’ll describe how to make progress prior to hardware availability.

EMBEDDED SOFTWARE DEVELOPMENT

Developing software is hard. Too often projects are late, with poor quality and inadequate feature
sets. Embedded software development shares some of the same problems with non-embedded soft-
ware development, but it also presents some additional problems. The development machine architecture
and operating environment are often different from the target machine. The hardware for the target
machine is usually developed concurrently with the software, and therefore not available until late in the
project. The hardware may go through several iterations, changing in ways that confound the software
systems. There may be real-time constraints, concurrent processing, and safety issues. Typical human-
computer interfaces are not used and the computer operating the machine is hidden from the user. Re-
source constraints such as limited memory space or processing power are the norm.

PRACTICES

Test driven development and object oriented design are two practices that can help make concrete
progress early in the embedded software development cycle. Test driven development is an incremental

Volume IV; Issue 1

February 2004
Transitioning To XP In An Embedded Environment

Nancy Van Schooenderwoert

Progress Before Hardware

James Grenning

Page 75

technique for concurrently writing and testing code. In this article we’ll look at applying TDD to embed-
ded development.

Object Oriented Design is not a new technology, but it is a poorly understood and therefore an
underused technology in the embedded development world. Object oriented languages like C++ or Java
really enable this technology, but the ideas behind OOD ideas can be implemented in procedural lan-
guages such as C.

TDD and OOD can give the embedded software engineer some advantages. One specific advantage
is designing, coding and testing prior to target hardware availability. I’ll discuss how you can make signifi-
cant progress by testing on your development machine. This implies using a portable programming lan-
guage. If your environment is so constrained that you must develop in assembler you may not be able to
use all the advice in this paper.

DEVELOPMENT ENVIRONMENT AND EXECUTION ENVIRONMENT

In embedded systems the development environment usually differs from the target execution environ-
ment. I can buy a development environment at the local computer store or on the net. I can buy compil-
ers, debuggers, source control tools, word processors and other tools for my development environment.
Development environments are relatively cheap. On the other hand the target is custom made. Maybe
the target is a cell phone, an engine controller, or a high speed color printer. I can’t go down to the local
computer store to buy that platform. Target systems are limited and expensive.

I’ve seen prototype hardware that cost over $1 million. This results in the engineering team having a
one to many ratio of target machines to developers. A limited resource means sharing and sharing means
waiting. Waiting kills productivity. Even with access to target hardware development time is slowed
whenever we test on it. Downloading and running in the target takes time, and it’s a tough environment
to debug in.

That said, testing in the target is necessary, but not always possible or practical. Fortunately, there are
alternatives. You may be able to run in a simulator, a limited hardware prototype, or your development
system.

SIMULATORS

Simulators can be very expensive and complicated. Simulation can be done at many different levels.
We can simulate the processor. We can simulate the behavior of the environment. A comprehensive
simulator can rival the target platform in complexity. Later in this paper I’ll describe an alternative that I
call a scenario simulator.

LIMITED HARDWARE PROTOTYPE

If you cannot have the full-fledged prototype, a limited hardware prototype is very useful. The limited
prototype would be very close in design to the target, but would not have all the capabilities of the target
system. Maybe it’s the target processor with none of the special IO.

Using a prototype can have a very positive impact. Only part of the IO is available, so it will be
necessary to build hardware independence into your design. This is one way that Object Oriented Design
fits in. OOD allows the definition of interfaces, isolating one part of the system (the main application logic)
from some other part of the system (the hardware implementation).

A limited prototype is a very valuable and necessary tool when the full target is not available. This
prototype may suffer from the same problems as the actual target. It may be expensive, not ready,

Volume IV; Issue 1

February 2004
Progress Before Hardware

James Grenning

Page 76

buggy, or slow for download and test. What’s an engineer to do? Perhaps we can focus our testing efforts
on the development system.

DEVELOPMENT SYSTEM AS A TEST BED

I’ll start out with a claim: significant progress can be made on the development system. With isolation
from hardware and operating system dependencies much of your embedded application can be tested
on your development system. You’ll need to be able to compile and generate executables for the devel-
opment system as well as for the target.

How does this work? The development system does not have the specialized IO that the target has.
How can you test it? What does running it on the development system mean? One key to solving this
problem is to design in hardware independence using OOD. The idea we started talking about a few
paragraphs ago. The second key is Test Driven Design.

OBJECT ORIENTED DESIGN

When thinking about Object Oriented Design (OOD) think interfaces. An interface can be defined
that describes how to interact with some hardware provided service. The code in the layer above the
hardware isolation layer can be designed to have very limited knowledge of the underlying hardware. In
C++ a class is defined that specifies the calling conventions of the interface and reveals none of the details.
The main application code interacts with the execution environment through a set of interfaces. The
application code can interact with the real hardware or some stand-in for the hardware that obeys the
same interface.

This UML diagram illustrates part of a home security system called HomeGuard. The logic in the
HomeGuard class understands what it means to be a home security system. It knows the incoming events
(window intrusion) and it knows how to report the security system state to its front panel. It does not
know that when you write a one to address 0xFDAF00, bit 3 that the alarm will start sound. The
presence of the FrontPanel interface means we can create other implementations of the FrontPanel. For
instance we could create a LoggingFrontPanel that prints the changes to the FrontPanel to a log file Test
Driven Development Cycle

Test Driven Development is a state-of-the-art software development technique that results in very
high test coverage and a modular design. In TDD we try to test each function in isolation and incremen-
tally build larger groups of collaborating functions and classes to provide the desired functionality. Tests
come in layers. The need to test in isolation means we have to decouple one part of the system from
another. Interfaces are one of our tools. Interfaces are used to decouple the parts of the system from each

Model4200
FrontPanel

HomeGuard

+ windowIntrusion()

<<interface>>
FrontPanel

+ displayMessage()
+ soundAlarm()

other. Notice the structure of the test code and applica-
tion code below. The HomeGuardTest class defines the
tests (only one shown by name). HomeGuard encap-
sulates the security system rules. The FrontPanel de-
scribes what can be asked of a front panel. The
Model4200FrontPanel implements the FrontPanel
interface and knows how to interact with the hard-
ware. But what is a MockFrontPanel? It is a test stub.
It is part of the test code. When HomeGuardTest
wants to test the break-in scenario, it binds HomeGuard
with a MockForntPanel. The MockFrontPanel can
intercept messages meant to go to the front panel so
HomeGuardTest can see if HomeGuard has responded

Volume IV; Issue 1

February 2004
Progress Before Hardware

James Grenning

Page 77

Model14200
FrontPanel

MockFrontPanel

HomeGuardTest

+ testBreakIn()

HomeGuard

+ windowIntrusion()

<<interface>>
FrontPanel

+ displayMessage()
+ soundAlarm()

per the requirements. The test can interrogate the Mock Object[MACKINNON] to see what state it is in. The
practice of testing helps to improve modularity. Modules are tested in isolation and in collaboration with
other modules. Between the test and the Mock Object we are creating a simulator for a specific scenario.

TEST(HomeGuard, WindowIntrusion)

{

 MockAlarmPanel* panel = new MockAlarmPanel();

 HomeGuard hg(panel);

 hg.arm();

 hg.windowIntrusion();

 CHECK(true == panel->isArmed());

 CHECK(true == panel->isAudibleAlarmOn());

 CHECK(true == panel->isVisualAlarmOn());

 CHECK(panel->getDisplayString() == “Window Intrusion”);

The window intrusion test looks like this:

EMBEDDED TDD CYCLE

Kent Beck, author of Test-Drive Development by Example[BECK] describes the TDD cycle as:

1. Quickly add a test
2. Run all the tests and see the new one fail
3. Make a little change
4. Run all the tests and see the new one pass
5. Refactor to remove duplication

This cycle is designed to take only a few minutes. Every few minutes you find out if the code you just
write is doing what you want. Is such a rapid feedback cycle feasible in embedded development? Let’s
look at some possibilities.

Volume IV; Issue 1

February 2004
Progress Before Hardware

James Grenning

Page 78

When and where are these tests run? The short answer is as often as possible and anywhere you can.
Let’s look at a few different situations: prior to target hardware, limited prototype hardware available
and full target hardware available.

If it is early in the project cycle and we do not have target hardware, we could run our tests on our
development system, with interfaces mocked out to isolate the application from the hardware. We could
use the development system’s native compiler. This sounds dangerous due to compiler variation; so, I
would add another step to the embedded TTD cycle: periodically compile with the target’s cross-compiler.
This will tell us if we are marching down a porting problem path. What does periodically mean? Code
written without being compiled by the target’s compiler is as risk of not compiling on the target. How
much work are you willing to risk? A target cross-compile must be done at least before any check in, and
probably whenever you try out some new language feature you have not compiled before.

Once we have a limited prototype, we’ll continue to use the development systems as our first stop for
testing and periodically compile for the target as above. We get feedback more quickly and have a
friendlier debug environment. Now we’ll periodically run the unit tests in the prototype. This assures that
the generated code for both systems works the same. The test should be run at least prior to check-in,
and more frequently based on how long it takes and how much work is being risked.

If some of the real IO is available on the limited prototype we’ll start to add some tests for the hard-
ware or that use the hardware. Automated tests are more difficult to create when the real hardware is
being used.

The tests may involve external instrumentation or manual verification. We want to make our tests
easy to run or they will not be executed. This leads to a design where the hardware dependent code is
very thin. Our goal is to automatically test most of the system.

1. Add a test
2. See new test

fail
3. Make change
4. See new test

1. Compile
for target

2. Fix

1. Run unit
tests in
target

2. Fix

Embedded TDD Cycle

1. Run
manual
tests

2. Fix

The discussion for the full target hardware is much like the discussion for the limited prototype; except
that now we can do end-to-end testing. Ideally the end-to-end testing would be automated, but this is
often difficult to achieve. One big challenge in end-to-end testing is running the system through all the
scenarios it has to support. Rare scenarios have to work, but how do we get the system into a particular
state and have the right triggering event to occur? Controlling the state and triggering certain events will
be easier in our test environments. Our Mock Objects can be instructed to give any response needed to
exercise the code. A common place to end up is that the end-to-end test is a subset of all the supported
scenarios that demonstrate that the parts of the system are talking to each other properly. A combination
of automated and manual tests is needed. The development systems tests never become obsolete, even
though the real test bed is available.

Volume IV; Issue 1

February 2004
Progress Before Hardware

James Grenning

Page 79

SUMMARY

Using Object Oriented Design Test Driven Development can provide embedded software engineers a
valuable test bed for their software. These techniques can be used almost out of the box for embedded
software development. But some additional steps are needed. If I have made this sound too easy, keep
in mind that there are some significant challenges that have not been covered: issues of concurrency, timing
constraints, testing a large application and how this fits in the bigger picture. I’ll address these issues in
another paper.

ENDNOTES

Ganssle, Jack, The Art of Designing Embedded Systems, Butterworth-Heinemann, Woburn MA, p.48

Tim Mackinnon, Steve Freeman, Philip Craig, Endo-Testing: Unit Testing with Mock Objects
(tim.mackinnon@pobox.com, steve@m3p.co.uk, philip@pobox.com)

Beck, Kent, Test Driven Development By Example, Addison Wesley, 2003, P.1

Volume IV; Issue 1

February 2004
Progress Before Hardware

James Grenning

Using Agile Testing Methods To Validate FIrmware

Bill Greene

This paper describes applying Agile software development practices to the
development of firmware for the Intel® Itanium® processor family, particularly in
the area of testing. It describes several unique testing challenges presented by
embedded firmware development, as well as our experiences using Agile methods
to address them. We found Agile approaches well-suited for our embedded
project, though most Agile methodologists are from very different object-oriented
and pure software backgrounds.

1. INTRODUCTION

Since you are reading the Agile Times, I can assume you agree with the statement from the Agile
Manifesto that “we value working software over comprehensive documentation” or other project artifacts.
I think it is important to emphasize the word “working” in that statement, and to acknowledge that
quality working software requires a focus on testing. Agile methodologies provide this testing emphasis in
several ways. XP advocates unit testing and the “test first” approach to development. Other Agile meth-
odologies advocate iterative development, where testing isn’t a phase you get to when you’re done with
coding (and don’t have much time left), but is rather more tightly coupled with the code development
itself.

I am currently leading a team of seven developers who are implementing the firmware for a next-
generation Intel® Itanium® processor. Our code has evolved along with this new processor architecture to
now consist of 300,000 lines of Itanium® assembly and 30,000 lines of C code. This is very different from
projects typically cited as examples for XP or other Agile methodologies. Embedded firmware has a
number of unique characteristics, but there are also similarities with other pure software efforts, and in
many cases Agile approaches are a perfect fit for the challenges of embedded development.

On a previous firmware development project, we faced a problem many software development
groups encounter: embarrassing test escapes. A root cause of this problem can be the “code and fix”
development style, where developers write code and then proceed to fix problems that are found by a
testing group or from customers in the field. In our firmware development, the cost of this approach is
prohibitive, as it becomes very difficult and time-consuming to root cause firmware problems when the
problems often require elaborate hardware configurations and system timings to be reproduced.

Page 80

Volume IV; Issue 1

February 2004
Using Agile Testing Methods To Validate FIrmware

Bill Greene

Test escapes are the most frustrating when they could have easily been found with simple focused
tests, and this indicates lack of coverage in some areas. In our group there were several reasons for a lack
of test coverage. Often there was too much reliance on a separate processor validation group, which gave
a false sense of security that problems would be found before our firmware got into the hands of custom-
ers. After making a release, I observed an attitude in the group that since no one was reporting any
problems, everything must be OK. Also, changes were sometimes made without being explicitly tested,
resulting in more problems arising out of the code that was intended to fix the original problem.

2. WHAT MAKES FIRMWARE UNIQUE?

For some reason, many firmware developers are not keen on the practice of testing. There is also a
common feeling among the general processor development organization that everyone wants to do
design, but very organization that everyone wants to do design, but very few people would choose a
validation job as their first priority. I joined the Intel processor validation team in 1994, and the testing group
would not have been my first choice. But looking back, the value of the experience was that I now see the
value of testing and am always thinking about how to test my code as I write it. I firmly believe that
testing is a skill that can be learned, but for some reason we mistakenly assume people have this skill
without any training. In the processor design group, it was understood that no feature can be said to be in
the design until it is tested. This mindset didn’t seem to carry over into the firmware team. This may be
because it is much easier to make firmware changes if you make a mistake, but the cost of making a
hardware change is much greater.The first silicon for a next generation processor design is not available for
several years, so until that time the firmware must be ltested on an instruction set architecture simulator, or
the actual processor logic design model itself. The biggest imitation of simulators is their speed: architectural
simulators run about 100K instructions per second; the logic design simulator runs only 10 clock cycles per
second! But a benefit of the architectural simulator is that it has powerful capabilities to automate the
running of tests, through batch scripts and a Perl API that can be used to control the simulation and track
pass/fail status.

Since the hardware design is being done in parallel with software development, and because of the
high degree of interaction between hardware and firmware, we can’t just test the firmware standalone
because the underlying hardware is also changing. This forces us to at least test critical sections of firmware
on the logic design model regularly.

The nature of assembly language also introduces a lot of potential areas for problems. Anything can
go wrong – even your simple “for” loop can have bugs. Defects at this level are a non-issue in higher-level
language designs. There are very few language-imposed organization or structure requirements in assem-
bly, which can create unmanageable and error-prone code. There is an even greater need to test the
low-level code implementation in assembly.

3. AGILE METHODS TO THE RESCUE

We applied a mixture of practices from Scrum and XP to our project. We have realized numerous
benefits, but the biggest impact was the improvement in quality achieved by the team focus on testing.
This focus improved everyone’s motivation to invest more effort in test automation, tools, and infrastruc-
ture. This in turn made it easier to develop tests, and as more tests were developed people could see the
quality increase, and the cycle fed upon itself. More about our experiences with Agile development will
come in a future article.

The technique of writing tests first promoted an amazing shift in mind set. Tests were no longer an
after thought which may or may not find problems in completed code, but became a tool to support the
coding itself. The tests provided an intermediate level specification, with more detail than the API defined

Page 81

Volume IV; Issue 1

February 2004
Using Agile Testing Methods To Validate FIrmware

Bill Greene

by the Itanium® architecture. It forced us to think about what the code should be doing before coding,
and made the coding process itself flow easily once the tests were in place.

On previous projects we had only developed functional tests which exercised the architected interfaces
to the firmware. Unlike other languages for which test harnesses are widely available, there is no
“AssemblyUnit” testing framework. For our current project, we had to write our own tools which allowed
us to run setup code, branch to an arbitrary starting point in our firmware code, execute to an arbitrary
ending point in our code, and then branch back to the test’s checking code. With this capability it became
easy to test any snippet of assembly code on the architectural simulator. The ability to code unit tests gave
us the capability to test components at a low-level and then put them together into more complex struc-
tures with confidence. And the feelings of confidence reinforced the value of the testing.

Scripts were also developed to automatically run and check the results of our regression suite. The suite
was broken into a 2-hour nightly regression and a less comprehensive 10-minute suite that is used by
developers as they code. The ability to run a group of tests with a simple command allows tests to provide
timely feedback.

4. CONCLUSION

The focus on testing that Agile methodologies promote has made all the difference in our project. The
“test first” and unit testing practices support this focus and provide the real-time feedback to create
quality code from the start. Our investment in tools and automation to support the testing effort has really
paid off, as it enables quick and easy test development. Now that testing is made easy, developers
actually enjoy writing tests and seeing improvements in the robustness of their code. It’s a vicious circle of
increasing quality!

Hard Questions For Hard Projects

Mel Pullen

INTRODUCTION

Here I am, a neophyte ScrumMaster, trying to get an organisation to use Scrum and Ken asks me to
edit the section that everyone will turn to. I could have refused, but I know it’s a way of keeping me going
on this uphill struggle. Hard projects? Trying to get Scrum accepted is a hard project in itself. Every project is
going to be a hard project, unless it’s already a Scrum site.

Well you can help. I’m writing this section for the first time in this newsletter. Through subsequent
editions of the newsletter I’ll report on progress in my company and I’ll cover any points I’ve thought about.
In future, I’ll write about other people’s experience with difficult projects. So you can help with questions,
answers and your perspectives on what I’ve written.

WHAT MAKES PROJECTS HARD

We know from the Scrum theory that variability is what makes feedback at many levels necessary.
The major parts of variability are caused by:

People

In my company’s case, like in many software companies, the culture encourages innovative people
rather than teams. The management notice individuals who carry out heroic programming feats. We still
remark on and reward the late night hack, the weekend work. Who wants to work in a team if they’ll
miss out on a cheque to pay for their next holiday.

Page 82

Volume IV; Issue 1

February 2004
Hard Questions For Hard Projects

Mel Pullen

More generally, despite software being a catalyst or an agent of change, developers are probably the
most reactionary. They think they have a job for life and it had better be a damn easy one. There are lots
of new ideas to play with, or to learn about, so they want time to meander around. Too many developers
have heard of the instant millionaires when companies float. Too many have seen management imposed
deadlines come and go and still the company continues. So what’s the big deal about deadlines? They’re
made to break aren’t they? If a team works too hard they’ll only get more work. If they consistently miss
deadlines, it has to be because they don’t have enough resources.

Management don’t want to scare off developers as they quite often hold the whole of a design in their
head. A long development cycle means that a developer holds all the aces until they deliver some func-
tionality. So management try to keep the projects under control the best they can and avoid too much
conflict. They rarely assess the productivity of their staff nor compare it to any industry norms in case their
company is shown to be low in the league tables. If they have to do that then the low numbers are
justified in terms of other attributes of the delivered software. It is better because of the great quality,
reliability, or stability of their product or how stringently the other non-functional or compliance require-
ments are applied.

So we have management that measure as indirectly as possible and developers that develop as
indirectly as possible. The waterfall process control model provides an illusion of control, when in fact the
only way this control works is by achieving next to nothing. Some deliveries are pitifully small, with the
software written as an incidental to the long periods of functionality and resource negotiation. We end up
with projects, project managers and project plans. And no project.

Technology

My realm is mobile device software. Smart phones. They eclipsed personal digital assistants. Now they
are being eclipsed themselves by communicating ultrapersonal computers. As with all technological inno-
vation, the next generation appears before the demise of the current one. Dinosaurs take some time to
die out, but die out they always do. It takes nearly two years to get mobile phones to market, yet their
window is between 3 and 9 months. The end point is fixed so you get more life out of a product the
earlier you get it to market. So far, every smart phone I’ve had experience of, has been late. Or canned.

Imagine readying a computer system with a general purpose operating system, with nearly every
protocol that is in use at the moment and with the latest silicon to display video. All in a couple of years.
Now imagine getting the OS ready for multiple customers when new protocols are happening so fast your
whole company could spend all its resources attending standards body meetings. Each customer has their
own agenda and if it’s a competitive protocol they might not want the OS supplier to put it into the core
because then the other customers won’t get it. The battleground is what is not in the core. You know no
customer has requested a specific technology. You know your product department has put it low down on
the priority. You know it takes months to develop through the waterfall process you have. What do you
do?

HOW TO DEAL WITH HARD PROJECTS

Leave, find another job. Simple, really. Well, I’ve considered it. A number of times.

I have been trying to get my company to use Agile technologies for a long time; over three years. I
think the idea of the company is good, I think their strategy is good. The execution of the delivery of
software can be improved. That’s why I stay. I could leave and go to a firm that wants a Scrum Master, or
find a consulting firm. Then I wouldn’t be working in my specialist area, which is mobile communications.

Page 83

Volume IV; Issue 1

February 2004
Hard Questions For Hard Projects

Mel Pullen

When I first arrived at the company I was just a developer and my interest in Agile development
methodologies was just part of the passion. I got teams to use CRC cards. I got people to try pair program-
ming. A few times I’ve got people to do test first programming. They try them then go back to their
comfortably numb way of life. I learned a vast amount by attending the Scrum Master course. I wouldn’t
have known to talk to management; project or line, about implementing Scrum without attending the
course. I would still be talking to the developers. As I learnt more about Scrum I realised it was more than
just software development, it’s process control. So it takes a while to come to Scrum with an understanding
of what it is, and what it is not.

This is important. The developers are likely to be the most resistant. If the project and line manage-
ment staff are recruited by being promoted from developers then they are likely to come out of the same
mould. These people can be talked to, but you’ll get little active, honest support from them. I spent a long
time getting teams to consider using Scrum, and they only considered it because they saw it as a bargain-
ing chip. They want more resources (see above), so they are happy to trial a new way of working. The
thinking perhaps goes along these lines:

“If I offer to do Scrum I’ll be able to ring fence some development resource. I can
than say I’m slower on defect fixing in the rest of my team because resources are
taken up doing the Scrum trial.”

Or worse still, it may be:

“I can offer to trial some of Scrum and do it half-heartedly. I’ll use it as a pool of
resources I can pull people from when I have an emergency in the real project I’m
working on. At the end of the project I can show that Scrum didn’t work so the
whole company will be able to reject it and go back to the easy life.”

This is from a developer or team leader’s point of view. What about the middle management? Are
they friend or foes? Unless middle management are wholly behind Scrum, have made an effort to find
out about it, then they’re against it. That’s my opinion.

Scrum will make middle management look stupid unless they participate. More like a headless chicken
than a chicken. Self managing teams make middle management redundant. If the managers have come
from software development they may have to go back to it, if not they may be out of a job. A cruel irony
when most organisations are so under-resourced they could re-use almost anyone who knows the busi-
ness.

So, to end this section, some advice to myself. I’m writing this as I do battle myself. Make sure senior
management know about Scrum. Make the message simple. Scrum helps your bottom line. You deliver
what your customer wants. Catch them just after they’ve had a fist banging on the desk meeting with the
customers. Offer them a solution. Better yet, offer them two; do Scrum in-house or do Scrum Offshore.

EXAMPLE QUESTIONS

When I was asked (press ganged) to submit material for the newsletter I polled people who had
expressed an interest in Scrum. I’m not the first in my company to talk about Scrum and certainly not the
most eloquent. However I was concerned about doing it rather than talking about it.

As Ken says, he doesn’t tell the companies what to with the technology, they shouldn’t tell him what to
do with the process control. So I wanted the company to really try it, not pussy-foot around. My idea was
that without doing it within the company we would have no comparative information. So, I’ll get back to
the comparative part later on. First I’ll describe what I’ve done so far, then I’ll look at the questions posed
by the people who responded to my request.

Page 84

Volume IV; Issue 1

February 2004
Hard Questions For Hard Projects

Mel Pullen

How do you get a company wedded to the waterfall method to successfully use Scrum?

This is my experience trying to introduce Scrum to my company. This is part 1 because, assuming I ever
get asked to contribute again, I’ll update this section with parts 2, 3 and 4. I also use the word successfully
because I don’t want to introduce Scrum in such a way as to allow anyone to say it was a failure.

So, some background. I arrived in Symbian, a joint venture, in September 2000 after working in a
couple of the owner companies as a contract programmer. I knew about agile development techniques
and had used CRC cards. I also knew about throughput accounting or Theory of Constraints. When you
work in lots of companies you learn about a lot of methodologies. Well, I tried to follow along the lines of
the other people who have tried to introduce agile technologies before me. As I’ve mentioned I’m a prag-
matist, so I wanted to do it rather than talk about it. Apart from which no-one makes decisions in most
companies. You have evaluation projects and steering groups to ensure collective responsibility. Manage-
ment by committee it’s called.

I discovered the ScrumMaster courses and asked my company to send me to the first European one
that was held in Milan in July 2003. I then started to make presentations about Scrum to anyone who
would listen. I also put together a page about Scrum on our internal Wiki. I can’t show these presentations
outside of the company without written permission. Apart from which they just list the basic reasons for
using Scrum; you know them all, or should do:

Scrum concentrates on exceptions (this comes from the Theory of Constraints). We leave cross func-
tional teams to manage themselves. By continuously monitoring and correcting development we get:

• Improved quality
• Better match to requirements, defects and change requests
• Empowerment of development staff

Among the presentations I have made I made one to the eXtreme Tuesday Club (XTC - http://
www.xpdeveloper.com/). So I could take the presentation public I put it on wimpypoint (http://
philip.greenspun.com/wp/display/1704/). I won’t duplicate it here, it’s not got too much relevance here as
it’s mostly about general agile technologies.That’s just about the end of part 1.

I’ve got one team leader interested running his team as a Scrum project. I’ve got a few project manag-
ers starting to take an interest. I’ve received words of support from some line managers. Myself and a
colleague have put together a presentation and taken it to a customer.

Line managers don’t bother to turn up to the presentations, the customer is more beaurocratic than we
are and estimates it will take a few months to make a decision. So far it’s been four months. The culture
of the action item prevails As long as there is no meeting to follow up on an action item it need never be
done.

Now I have to take the bull by the horns and present to the board. For that I’m waiting until they
have a crisis on their hands. I’ll report on progress later.

Oh, didn’t I tell you? Companies that take on Scrum fall into two camps. Either they’re pro-active or
they’re in crisis and will try anything that will help them get out of their mess. See if you can guess from the
questions I list here which camp my company is in.

Project manager questions

This is asked by most people and is the one that most project managers ask.

“How do you make a large, complex, project cope with cross functional
dependencies at design and integration phases?”

Most project managers in our company think that writing an operating system is more difficult than

Page 85

Volume IV; Issue 1

February 2004
Hard Questions For Hard Projects

Mel Pullen

applications. As an aside I think it’s easier because we rarely have to write a user interface, just throw
together an API.

The people who think systems are difficult see the problems of interactions as one of the biggest.
Certainly interactions between components in our operating system take their toll on our developer’s time.
However this is expected and should and is factored into plans. If multiple components are being changed
simultaneously, of course there will be interactions.

Well, armed with Ken’s latest book the answer to this is simple but I’ll leave the problem here. The
solution is also mentioned in the ScrumMaster training courses, so go on them if you haven’t already. You
put people from the various projects into the other teams. Either part or full time, or just to sit in on the
scrum meetings.

The major part of this problem is solved by the basic nature of Scrum. Frequent inspections and adap-
tations. If code is released to interested teams every month then only a month’s worth of work will be
affected by an unforeseen interaction.

How it’s done at the moment is for architectural designs and functional specifications to be written and
then read by the teams who might be affected. The teams then plan to carry out integration work at
various intervals. This involves some of the dependent team (the protocols and system layer code is as-
sumed to be core) spending time running their test suite on a build with the new code. Together with
finding bugs and re-submitting the code this can take up to a week. Mostly paper work, so the manage-
ment know that the integration has succeeded.

To a project manager, just having integration as part of the backlog sounds like no design is being
done. The essential feature in this case is the cross functional nature of the sprint meetings.

All of these rest of these questions came from one project manager. He’s sufficiently motivated to ask
me to present to his team. What do the questions say about his concerns?

“How does Scrum provide a higher level of confidence in meeting the end date
compared to traditional technologies?”

I think responding by saying this is a non question is too glib. The fact is this project manager needs to
know how Scrum can give greater accuracy in estimates. It’s not enough to say that the nature of com-
plexity is such that any estimates will be inaccurate. What is needed here is to indicate that by delivering
in increments the estimates can be verified along the way rather than having to wait until the end. With a
waterfall approach it is unlikely that another round of estimation will be made unless the project hits
delays.

“Is Scrum better for low risk environments where we train people?”

I’ve not done my job by explaining that Scrum is actually good for high risk projects. Better than any-
thing else. Because it is adaptive. I’ve also not explained that the self management epiphany the team
experiences can’t be trained.

“How does Scrum impact the career path / does it mean a redefinition of traditional
promotion values?”

This is a difficult question to answer honestly. In my opinion, the western programmers have become
complacent. Hubris is the correct word and it is appropriate is considered one of the three virtues of a
great programmer (Laziness, Impatience and Hubris). There are developers in Eastern Europe, the Middle
and the Far East that can’t wait to take our jobs from us. I looked at a web site just this month created by
a company in Lithuania. It was a good site, fast, clean. And it cost the owner $470 to have it built. Off-
shore development is here. It’s only a matter of time before they offer Scrum. Our senior managers

Page 86

Volume IV; Issue 1

February 2004
Hard Questions For Hard Projects

Mel Pullen

may take Scrum from an offshore company when they won’t take Scrum in-house. At least they get to fly
off to an exotic location for the Sprint Review and Spring Planning meeting.

I’ve had discussions with Offshore Development Companies (ODC) that offer project management as
well as the execution. In the context of Scrum the Scrum Master really should be with the team to carry out
the daily Scrum meeting. So the answer to this question is get on board. Scrum offshore will look increas-
ingly attractive to senior management as the wage bill goes up and the productivity goes down.

“In terms of a defined and unchangeable scope - can it reduce the timescale for
development?”

We do have this in our organisation. In fact quite often. They’re called protocols. We have to code a
module that plugs into a framework that already exists and provide the new protocol according to the
specification. This specification is subject to a standard. A good example is Real Time Protocol (RTP) or
Motion Picture Experts Group (MPEG). I think it will reduce the timescale, in the long term. I think this
because not everything will be thought of at the beginning.

Functionality that is demonstrable to the customer in terms of a protocol require that other artifacts
are developed. In the traditional waterfall approach these artifacts may not be developed at the begin-
ning because no-one appears to want them. Only at the end does the customer realise they may want
extra functionality and then raises a few Change Requests. An obvious extra when considering protocol
modules is the control – the ability to turn the protocol off forcibly. Battery operated devices have a habit
of stopping.

“How can Scrum be used to more effectively manage costs and benefits in a fixed
cost environment?”

I really do think this is a simple question. Anyway it is adequately answered in both of the books by
Ken Schwaber. Normally you will be bidding against a known set of requirements. You have to plan
enough to be able to create a backlog in priority order from these requirements. You can offer a quote
based on these estimates, knowing that some of them are inaccurate. That’s no different from any other
approach.

You indicate to the customer they will get a change to see progress on a monthly basis and to change
the priorities of later deliverables. They will be able to decide to terminate early. You point out that the
Pareto principle (80:20 rule) means that the customer may be happy with the functionality much earlier
than with a one hit wonder; they can stop the development at the end of any sprint as there is potentially
shippable work there.

If they drop their frills they get to save money. No other mechanism offers that option.

“As a customer of a company who uses SCRUM how can I be confident that they
will be better than my normal supplier using tried and tested traditional
methodologies?”

Isn’t Scrum tried and tested? I thought it was companies that were unreliable, worse yet, the people in
them. Again, the incremental demonstrations of working functionality gives a customer greater confidence
after just one increment. With any other company they have to wait until delivery. So due diligence
prevails. Ask around.

As an aside and this is more a comment to the project manager from my company who raised this
question. Senior management would manage the risk better if they went out to a company who has
carried out Scrum development before than to train developers in-house. Programming is programming,
only requirements make it different. Every technology is different, every new bit of functionality has a

Page 87

Volume IV; Issue 1

February 2004
Hard Questions For Hard Projects

Mel Pullen

learning curve so it’s probably lower risk getting an outside Scrum company to do the first Scrum project. A
sobering thought.

“Does Scrum improve system reliability and performance?”

If they are requirements, they are addressed. Need I say more? After an increment is demonstrated,
the customer may decide to put these attributes higher in priority for the next sprint. That can’t be done in
waterfall.

“How costly would Scrum be in training to move people across to?”

One consultant to come in and train for two days. Is that cheap enough?

The real cost that this person is thinking about is the people cost. As I’ve mentioned before, developers
are some of the most reactionary people. The cost of training will be high because many people will insist
they are not capable of working in Scrum teams unless they have first been trained. Once they are
trained and then discover they can’t sit and surf the web for the best part of the day they’ll want to find
another job. We may get a lot of “attrition” shortly after Scrum development practices are instigated. It’s
too much freedom. They don’t want to be responsible for their work. They’ve had project managers, team
leaders, technical leaders, technology architects and line managers to tell them what to do. Why change
and have to think as well?

“What skills sets need more emphasis to enable Scrum?”

Thinking. I think. People are going to be working together so their sense of humour may get exercised
more. In terms of development teams, I think it is immaterial. Teams are cross functional in their composi-
tion. So a designer may have to help with documentation or testing.

“Which types of developers find SCRUM more enjoyable to work under?”

The one’s who would like to work a real 37 ½ hour week then go home knowing they’ve done a
good weeks work. Again this is likely to cause a culture clash. In cold, damp, drizzly London developers
may prefer to sit in the nice, warm office for 10 hours a day. Then slide off to the pub for a few pints
before a curry or a kebab and then bed.

I’ve already had developers refuse to work in a team, claiming that they work as a team yet each do
their own development work. We come back to the heroic programmer mentality. I work late most days
because I find it difficult to get the work done in an environment where people want to discuss their work.
I used to arrive at a normal time (for England – 8:30 to 9:00).

I ended up doing 50 hours, so at the moment I come in late. That way I keep my hours down. My
manager regularly starts before 8:00 and finishes after 18:00. Luckily the culture is changing and the
newer developers don’t feel so devoted to the company. They see it as a job. They’re no longer being sold
the myth that they’re in a high tech startup that could make them rich.

People find it hard to let go of their old ways of doing things. If that means sitting at a desk and
working on a piece of code, or worse still crafting a functional specification, then it’s going to be hard to get
them to work in a team where their progress is open to scrutiny every day of the project.

Developer Questions

Most developers don’t know anything about Scrum apart from it being ‘another software develop-
ment methodology’. In our company they’ve heard about lots and the development process control system
we have is supposed to allow teams to use whatever development methodology they like. How they do
this when they get all of their requirements at the beginning and system test only test once they’ve deliv-
ered everything is possibly another hard question.

Page 88

A deveoper named John really does know about Scrum. He’s given a presentation about it. He’s a PhD
student, and the company allows him about a day a week to continue on his dissertation. He’s passionate
about everything in life, particularly programming. He gave me this response, well nearly this. I’ve tidied it up
a bit, but not too much. John is not a native English speaker. English is not his mother tongue. By the way,
that’s one of the many virtues of working here. I can go to someone and ask them about their perspective on
an Internationalisation problem. I can ask about the culture in a country. I can even get a translation done
easily.

“The major problem with organisations and projects during avalanches is
momentum and inertia.”

In that respect the most difficult problem is to first to stop and then to act after giving it some thought,
then briefly stop again and iterate. Symbian projects are no different; first we need to stop and then do
Scrum (or whatever). Now, as far as Scrum goes it is excellent because it allows you to steer momentum
and inertia while it forces you to build and control them.

By far though, before we can even remotely do so, we need to stop in the middle of an avalanche...
and that involves some serious physics” So, John likens the state of our company to being in an avalanche.
That’s an interesting perspective. Does this mean the staff don’t have time to think? That they won’t try
anything risky? Well, we can’t stop the avalanche. As John says, that involves some serious physics. So we
have to plan quickly and adapt. Hey, that’s Scrum.

LAYING THE GROUNDWORK

Are you going to be in for the long term? Are you going to keep trying to get your company to con-
sider trying Scrum properly? If you are you have to make sure you’re prepared. I’m quietly collecting
metrics so I can create productivity figures of the existing development methodologies. I can then offer the
assurance of comparing the productivity of the existing processes with Scrum development.

I’ve found a way to get development teams to make estimates using function points instead of just
numbers. I can measure historic figures from our code base. I will correlate estimates against the time
taken for each of the sub projects, so that by the code delivery phase of the next project (about 9 months)
I should have some productivity figures. I’ll also create some figures from working with the teams. Then I
should be able to get senior management to at least consider Scrum if I can predict a huge productivity
increase. I’m always learning, although I don’t get given any time in work to do any of this. This page looks
good on metrics: http://sern.ucalgary.ca/eeap/wp/bk-position-2003.html.

So a final suggestion. Should we start to collate productivity figures to be able to present management
with success stories? I know I need them.

Volume IV; Issue 1

February 2004
Hard Questions For Hard Projects

Mel Pullen

Implementing Agile

Lisa Crispin

Even if you have a lot of experience using Agile practices, it can be tough to introduce Agile practices
and processes into an organization that is less than Agile. In this section of the Agile Times, contributors will
share their successes and mistakes in getting their organizations to adopt Agile approaches. Some areas
we might explore:

• What fears people have around ‘Agile’ and how to deal with them
• Showing developers how Agile practices will help them
• Measuring success of a new practice or process
• Patterns for getting your organization to adopt new ideas

Page 89

Let’s say that you’ve just read an article about a new, cool approach that you are certain could save
your organization gazillions of <whatever currency> and that you’re all fired up, ready to convince every-
one on your team to try this <whatever technology>. Then reality sets in. Those people won’t listen! Maybe
you’ve tried talking about other new things in the past, only to be met with resistance. Or maybe you had
limited success, a few were open, but the excitement died down when real work had to get done and
then everyone got busy and forgot all about your new idea.

My good friend and colleague, Mary Lynn Manns, and I have been collecting patterns for introducing
new technology into the workplace. We have been working for several years, capturing successful experi-
ence, submitting our work for review, continually revising, growing, and learning strategies from those who
have introduced new ideas—including our own hard-won lessons learned. The book that describes these
patterns and several case studies will be published by Addison-Wesley in 2004. An early edition of all the

Volume IV; Issue 1

February 2004
Implementing Agile

Lisa Crispin

• Potential pitfalls and how to avoid them
• Showing managers the ROI of implementing Agile software development
• Leading by example

Last year’s Agile Development Conference had a well-attended and lively technical exchange on this
subject. See the notes from this discussion at http://home.att.net/~lisa.crispin/Introducing_Agile.htm for a
look at the types of ideas we might talk about in this section of the Agile Times.

We welcome your contributions on this subject! Please contact Lisa Crispin at lisa.crispin@att.net.
Watch this space in the next issue for a stimulating article on introducing Agile!

Sociology And People

Boris Gloger

Kent Beck wrote “Embrace Change” and by all means, the Agile development methodologies try to
change the way we do software development in this century. Weinberg had written “programming is a
psychological activity” and he was right, because software development was seen as being done by
individuals who where tight together by manager.

In these days, we know that creative work is most of the time done by individuals who work in teams.
Teams can be far more creative and productive than a single individual can be. Agile software develop-
ment is about creating business value by utilizing the creativity and abilities of teams.

Linda shows us in her brilliant way we can use “change patterns” to embrace and to enable change in
our organizations. She gives us tools that will help scrum masters, project managers and last but not least
software developers to get change done. Deb found a book by Tom DeMarco. She tells us the story why
“Slack” - or in other words “space” is necessary to change things.

Sociology is the science of people in groups, the science of their interaction in groups and the science of
the interaction of groups: or in short the science of the way people are working together. Agile software
development addresses in its basics the way we think about the way people work together. I my own
article I will try to give you an idea in which way social laws rules our daily behavior.

I call you to participate in this discussion. Send me your feedback and your ideas about the human
factor in software development.

Volume IV; Issue 1

February 2004
Patterns For Introducing New Ideas Into Organizations

Linda Rising

Page 90

patterns can be seen at: http://www.cs.unca.edu/~manns/intropatterns.html

I’m going to describe a few of these patterns—those that might get you going. I’m anxious for any
feedback or stories you might want to share. These patterns are “alive” and will continue to grow long
after the book is published.

Let’s begin with the first, and most important pattern, Evangelist. The name has a “religious” flavor
and that is intentional. We’ve found that unless you are truly passionate about the new idea, others will
not be convinced to leave the tried and true ways and follow you. There’s another piece to this rationale.
If you don’t have faith in your proposal, then you won’t survive the bumpy road to grass roots adoption.
There will be successes and failures along the way and you must celebrate the former and withstand the
latter. Only a sincere and abiding belief will carry you through all this turmoil. You must have passion for
the idea and share that with others.

As we collected information about these patterns, someone suggested to me that many of these are
based on influence strategies. This area of soc ial psychology (the psychology of groups) was completely
new to me, but now that I have read several books and articles, I can see the data that supports our
patterns and that has helped me understand why they are patterns—why they are successful solutions to
problems we face in introducing new ideas.

Let’s look at some influence strategies for Evangelist. Research shows that we are more open to new
ideas when they are presented by someone we like. Studies in this area show that we tend to like those
who are like us and those who are attractive. While there’s very little we can do about our physical
attractiveness, there’s quite a bit that we can do about being “like” others. Looking for commonality is the
key. Don’t set yourself apart, even within yourself. If you go into the situation telling yourself, “These guys
are bozos. They won’t get it. I’ve read all this stuff and I know the answers. Why don’t they just listen to
me?” you’re doomed from the start. If, instead, your attitude is, “I can identify with what these guys are
going through. They’re smart and want to do the best job they can. If I share my story with them, I think
they’ll hear me out.” That’s it—tell them your story. Don’t regale them with facts. Facts are good. They
keep our minds busy, so our emotions can figure out what to do. [Dale Dauten, one of my favorite authors
said that!] Share your experience and let the hearers see how you are just one of them and it will go a
long way toward convincing them that you have something useful to share.

A pattern that can help in this regard is Just Do It. Instead of waiting for the right moment, experiment
as much as you are able with the new idea in your own work and then report to others. Don’t overprom-
ise, but actual experience is convincing, much more so than a case study in an article. However, if the case
study is from a respected author or company, the pattern External Validation says that this kind of infor-
mation can be convincing, but, remember, it must be respected by the target audience. This, again, is
based on influence studies—it’s the principle of authority. Like it or not. Believe it or not. We are influenced
by respected authority.

Let’s take a moment to talk about influence. Let’s address those fears that this is underhanded or
some kind of dirty trick. Let’s also address those who say, “Well, I’m not influenced by that!”

First, the underhanded or dirty trick part. The influence principles have been shown as a result of
controlled research. They give us information about the way we are, about how we make decisions.
When you set about to convince someone, you make assumptions about what is convincing. Most of us are
left-brained geeks. We believe ourselves to be completely “logical.” Therefore, our attempt at convincing
strives to follow this model. We make a “logical” argument. Research has shown, however, that we make
decisions based on emotion and justify with logic. If you create a Powerpoint slide with a list of bullets that
logically leads the viewer through a reasoned argument and make no appeal to emotion and have no

Volume IV; Issue 1

February 2004
Patterns For Introducing New Ideas Into Organizations

Linda Rising

Page 91

emotion in your presentation, the only people you will convince are the ones who already agreed with
you. All good salespeople know this. They are influence experts. They know that success depends on using
the influence principles. If you want to convince, isn’t it “logical” to understand the best way to go about it?

Now for the “that won’t work on me” response. In these studies, there is always a control group – not
only a control group for the sake of the experimental results, but also a control group that targets the issue
of influence itself. For example, many studies have shown the benefit of having good-looking models in
automobile ads. Advertisers know we transfer the beauty and desirability of the model to the cars. In one
study, men who saw a new car ad with a seductive female model rated the car as faster, more appeal-
ing, more expensive-looking, and better designed than those who saw the same ad without the model
(the first kind of control group). The second control in this case is to ask men if they would be influenced by
the model, and, of course, they always refuse to believe that the presence of the model would influence
their judgment! I see this as the most powerful part of influence strategies—that we don’t believe we are
influenced! Now that I have been studying this area for years, I see that I am surrounded by it, and, yet,
even in the midst of it, I feel pulled to go the way of the influencer!

Since I’ve been studying social psychology, I’ve also been introduced to evolutionary biology. What I
thought were patterns that experienced change agents had helped document—are based on influence
principles that researchers in social psychology have studied for some time. But, underneath these prin-
ciples—we’re hardwired to behave in certain ways. This is scary stuff—but useful.

This is just the beginning. For those who are new to patterns, I’m going to follow this article with an-
other one or two that will help you “read” through this large collection and make sense out of the infor-
mation in a way that is meaningful for you. Good luck in your attempt to introduce your next new idea,
download those patterns, and don’t forget to send feedback. Thanks!

Volume IV; Issue 1

February 2004
Computer Programming Is A Social Activity

Boris Gloger

“Sociology, the study of human social life, having as its subject-matter our own behavior as social
beings” (Giddins), offers us a distinct and highly illuminating perspective on our human behavior. Every
team leader, project manager, scrum master or line manager is confronted with us: human beings. With
this article, I’d like to start a series of articles about the sociological aspects of Agile development teams; or,
to say it in a different way, bring some new attention to team dynamics. I won’t claim to be scientifically
correct or to be writing scientific articles in this area. Rather, I’d simply like to draw your attention to
aspects of team dynamics in a very accessible manner.

On the next pages I would like to show you that some of our daily conflicts between different teams
are caused by very old rule sets. Then I would like to answer the question why we use these rule sets.
After you have an understanding of these sociological rules than I will try to give you some ideas about
how you can manage these rule sets. And I will give you a first insight into (at least) my observation that
Scrum is working because Scrum deals with our sociological behavior very intuitive (if it is possible to say
this from a process framework).

WE ARE ALL SOCIAL BEINGS

We are all damned. All of us are influenced by the fact that we are social beings. In fact, we often
unknowingly use fairly primitive ways to communicate as we move from group to group, sometimes
invoking roots of behavior that may not necessarily be nice but are effective all the same.

Volume IV; Issue 1

February 2004
Patterns For Introducing New Ideas Into Organizations

Linda Rising

Page 92

Volume IV; Issue 1

February 2004
Computer Programming Is A Social Activity

Boris Gloger

To be a little more specific, we all know about the classic problems we tend to encounter in interac-
tions between, say, a Marketing department client and our software development team. For instance, the
software team might conclude, “Those marketing people are different! They don’t understand us because
they don’t have a clue about what really matters, TECHNOLOGY!” Or, we might say, “Those people talk
a different language than we do.” Often in these situations, teams, and the individuals in those teams,
manage these disconnects with the client by simply creating a wall around themselves. And so, behind the
wall, we surreptitiously decide that we - the technicians - will simply do what WE think should be done,
even going so far as to ignore requests by our marketing clients. Why? Because we are so sure that, “Our
ideas are clearly better than the ones from the Marketing Department.”

Does this situation sound vaguely familiar to you? It might not be politically correct to say such things,
but if you think about how our software teams will talk or complain around the office or in the cafeteria,
you know that these thoughts are much more common than we might usually be willing to admit.

SOCIOLOGICAL INSIGHTS IN TEAM DYNAMICS

So, what are the reasons for these situations, these conversations and thoughts? I would like to conjec-
ture a viewpoint or hypothesis that one might not normally expect. In short, one reason is our basic human
behavior. There are some anthropological and sociological aspects we should consider if we want to think
about reasons for these thoughts and actions.

Whether we want to believe it or not, there is one important need in all of us: the desire to belong to a
group of people. The groups we belong to—family, school, sports clubs, work groups—change over our
lifetime. But the anthropological fact is that we are truly social beings, and one very strong expression of
this is that we want to belong to a group. One reason for this is that in former times, a single person
would have had no chance to survive. The worst punishment was always to be outcast by your group.
The other reason is that we are born into the world without the ability to survive on our own. If we did
not have someone to protect us, feed us, and show us the world, we would die in a few hours.

This fear of not belonging to a group forces an interesting behavior. When people decide that they
want to belong together, or when conditions bring them together, they tend to try to converge on one trait
or similarity that all team members have. In our IT world, this is usually the application or project on which
we are working, or we might be in the same training course together. Or we may congregate along race
lines or nationality lines, where we are from China or Germany and therefore we try to find others from
our country of origin with which to socialize. Or perhaps we base our sense of group on the department
for which we work. And yet, if we meet a group from another company, suddenly it doesn’t matter if
our group is from different departments; now, we are from one company and this is a part of our identity!

The interesting thing is that software development teams behave in exactly the same way as all these
other non-software groups. There is no exception in sociological behavior for software development
teams. They try to find one similarity among the group and then they try to protect themselves by show-
ing that they belong together in every aspect of their communications. They start to expand this similarity
by using team languages, or they introduce specific rules or a specific way to work. Or, they try to identify
themselves by saying that they are the “X” team because they are responsible for an application “X”.
There are a lot of possibilities. You can say that a group that really feels like a group starts to have group
culture.

Page 93

Volume IV; Issue 1

February 2004
Computer Programming Is A Social Activity

Boris Gloger

HOW CAN YOU OBSERVE YOUR “TEAM-CULTURE”

I would like to sharpen your view, to “see” or to “feel” your team culture. The easiest thing to see that
your team has its own culture is to have a look around. How do your teammates express the fact that
they belong together? Do you go to lunch together? You might have a specific team event every week or
month, you might use specific abbreviations, or you identify yourselves with a specific application you are
responsible for. Do you have a special self-image. A self-image: maybe boasting about the best applica-
tion you build, or software only you use, or boasting about the methodology you use.

Please, you need to understand: nothing about this behavior is wrong. It is absolutely necessary and
“normal” for humans to act in this way. But what is if you have now a closer look? Can you see the wall
that the (your) group has already build around itself? Perhaps it is only a very thin wall, a wall you do not
see. Maybe it is more an inner feeling that there is something that is between you and your neighbor team
or department.

This wall is necessary! It protects the individuals and it gives the individuals the feeling that he or she
belongs (to a group). You can call this a type of security. It is your social safety net. You know you can
count on the people within you group. Or in other words: you trust each other. Trust is very necessary for
the interactions and the performance of the team. Another aspect: Teammates that belongs together for
a long time do have established a team culture based on their history. Their common history establishes a
strong relationship. A relationship that the teammates feel they can count on: again we have trust.

But there is another side of the coin. Besides this advantages there are also some drawbacks. One
drawback is the language the group creates. As any village has its own dialect of the common language
(in Europe this might be more visible than in the US), groups create their own group dialect. We call this
group dialect: sociolect. A sociolect is the specific language a group builds by their own. This is a form of
code. A code with expressions and meanings no one else understands. For example the way a doctor is
talking to his colleague show the sociolect of his specific profession.

Another possible drawback is the way they interact with each other. They might have a way that
excludes other people. Maybe they have a special ritual or a way they start the morning or end the
evening. And this ritual is seen as a very uncommon way of doing things by the outside.

In all cases, when a team starts to be seen as a team then sociological rules (laws) start to work. If a
group has established their security walls, their “moat”, then they might be seen as a “potential” problem
from the outside. They are different from “us”. Unfortunately this means for any social group: they might
become an aggressor. You can observe this behavior quite easily if you have a look in your own company.
Many conflicts are running about resources, more people, better equipment, more money or better
projects. People do have questions in mind like: Why do they get something and not us? Why do they get
a new team member and not us? They are mostly caused by these social aspects.

What happens if such walls are very easy to see? That means if everybody knows that there are
borders. In most companies there is a “moat” between Marketing department groups and IT department
groups. Fact is both groups usually have a clear self-image. These self-images distinguish both from each
other. (And you can easily hear the different sociolects of each group.)

But both groups have to interact with each other. What happens usually? Most of the times we gain a
lot of misunderstandings (Such misunderstandings are sometimes based on the fact that the same word
has a different meaning in the sociolect of the other group). One reason is that they are not able to inter-
act with each other on a basis both can accept. There is no trust. There is fear that the other group might

Page 94

Volume IV; Issue 1

February 2004
Computer Programming Is A Social Activity

Boris Gloger

want to rule the situation. The other aspect is that each team members of each group will always try
to identify him as belonging to Marketing or IT.

This lack of trust leads to a similar problem: The always wanted “cross-functional” project team that is
made of people from different departments will need to deal with this lack of trust. A project team
member cannot easily accept that he now belongs to a new project team. Each person in this project
team will be loyal to its home group in the first time. He might not be able to leave the old group because
he has a history with the old group and he has strong feelings for his “home” team.

Another aspect is that each human group always settles in a territory. This anthropological behavior
that you can observe in the animals is valid in our daily work environments also. When you replace the
word “territory” with the word “department” than you will see this aspect immediately. Every depart-
ment wants to have the kingship/dominance over a specific aspect. Conflicts occur if someone violates such
dominance. It is important to consider this kind of social territory during intergroup interactions. You will
create very big conflicts by not understanding that a team gets its self-image from a specific task or
responsibility. For example, you want to be nice and you want to help the other group with a task they
usually are responsible for. Then they might get offended, because you scare them. What if you take over
what they do? What will be their core then?

HOW CAN YOU OVERCOME SUCH PRIMITIVE WAYS OF BEHAVIOR?

What can a team leader or project manager does to avoid conflicts that were caused by the fact that
we are social beings and that social beings follows very “old” rules. I will not give you a guideline or a
handbook. There is no „How To Make ...” that is able to give you the guidance you might expect. But I can
try to sharpen your understanding of these processes. I believe understanding is most of the times the first
step to change. So please do not consider the next ideas as musts or tips.

First - Understand your type of walls. Start by observing your own team and its structure. What kind
of team culture do you have? In which way do your team demonstrates that it is a team? Do you have a
specific process your team is proud of? Do you have a specific communication style that separates your
team? For example we are using English as team language in IT department of an Austrian company. Do
you have a specific way to show that your office is your office (territory)? For example, we put a big
picture of the Scrum methodology on the wall and we plotted our Sprint Backlog in a way that every-
body can see it. It is viewable that we “own” this part of the office. (There are a lot of people around us
that do not like this.)

Second – Increase you ability to communicate with the outside. If you know in which ways you segre-
gate yourself from other teams, you might be able to see possibilities for increasing the communication
with the outside. The goal is not to destroy the walls. That is not useful. Our social behavior wants to
protect us. It might not be appropriate way of acting in a specific situation. But that does not mean that
this way of action is wrong at all. On the other side you cannot neglect: Your group is different from other
groups. You do not want to create a symbiosis with other groups.

On the other hand you want to establish and enforce a better way of interaction. One possibility is to
identify the similarities that you and the other group have. There is always at least one. Based on these
similarities you can start to create a relationship. The other group will see, that you are not so bad, be-
cause you are similar to them (at least in one specific thing). Imagine this first similarity as the first gates in
your both walls. Now you can build a street between both gates. Maybe by using this street more often
(you have more successful interactions) you will find out that there are much more similarities.

Page 95

Volume IV; Issue 1

February 2004
Computer Programming Is A Social Activity

Boris Gloger

Another possibility is that you can create a common enemy. This is a very seductive track. It is working
very fast (- the dark side of power). But as most of the fast solutions this is combined with big costs. What
happens if the enemy is gone? And the problems of allies is always that the do not trust each other when
circumstances are changing. It is a very fast but week way.

The next possible way is to structure the teams so that both teams want the same aim. This is the
positive way instead of using a common enemy. This way is much harder. To go this way would mean
that you have at least one working relationship. Based on this you can start to create a common goal.

Another way: The way of diplomacy. You manage the interactions between territories (or interests).
You could try to define the roles of both groups and try to minimize interferences. I.e. marketing creates
the requirements and IT builds, no discussion. That is the way to deal with the different territories correctly.
I can only say this works but it needs not to interfere in the others domain.

Third – You need to build on your common successes, on your similarities. The above techniques are
useless if you change your strategy to often. Stay reliable. It is hard work to try to overcome the sociologi-
cal rules. For example if you are working in a cross-functional team it is very difficult to live the fact that
you are now in another team.

It is obvious, that all these insight can be used to create an internal team spirit. A project manager can
start building such a team spirit by saying that his team is outstanding, or all the others are incompetent,
useless or something like this. In this case you use the fact that people stays together in case they have a
common enemy. Or you use the fact that they feel good as long as they belong to the “more competent”
group. It does not matter if this is objectively right. It will work as a foundation for team spirit as long as the
team illusion holds. These points should not be considered as hints but as examples to make different kinds
of behavior visible. All of us behave this way, sometimes unawares.

SCRUM AS ONE POSSIBLE WAY TO OVERCOME “THE WALL”

As an Agile developer (a PM for me is a developer also) you are already aware of self-dynamics and
the possibilities to enhance the quality of communication with your clients, your teammates and your
management. If you accept that we are social beings and when you are realize that we as social beings
follow our basic instincts — very old rules — than you might be able to increase the collaboration skills with
the “enemy” further.

Scrum is a very interesting way to overcome the “wall.” Scrum deals with the territory aspect by clearly
define roles and responsibilities (chicken and pigs). It deals with the trust aspect by showing at least every
month what the project team has delivered. It deals with understanding and communication problems
with Daily Scrums and an onside customer. Scrum deals with the problem of not understanding the
viewpoint of the others by using the working software as visible product. Scrum creates a culture – a way
of “how we would like to work” by establishing the Scrum framework (and by having the Sprint Feed-
back sessions).

OUTLOOK

Weinberg mentioned 25 years ago that programming is a psychological activity. He was right. In our
days programming business software applications is not possible without the combined effort of many
persons: so we need to rephrase this statement: programming is a social activity. The sum is more as its
parts. But to be able to understand how this sum is working we need to understand our social behavior as
much better. In this article I was able to show you only very view social aspects that leads to team dynam-
ics we are not always able to control. I explained why people want to live in groups, why groups need to
protect themselves against other groups, in which way groups create an identity for its members and in

Page 96

Volume IV; Issue 1

February 2004
Computer Programming Is A Social Activity

Boris Gloger

which way these facts might lead to problems. In future we might be able to understand these dynamics
much better and we might see that the “silly” behavior of groups is in fact very rational. In my next article I
would like to show that Scrum is a kind of guidance that gives us some very simple tools to deal with the
social aspects I described in this article. I hope you have found this article interesting – please sent feed-
back to boris.gloger@chello.at.

HOW DO WE CREATE THE AGILE ENTERPRISE?

So how to we integrate Agile development processes into an existing enterprise? This question has
caused me sleepless nights. Take for example, a Systems Integrator (SI) that uses an existing development
methodology, possibly even a number of them, for clients. The SI would probably have a project manage-
ment process, too. But could the SI’s client have their own processes impacting the delivery of software? If
the SI was delivering a solution into another Enterprise the SI’s client might use Six Sigma. The SI would
have to integrate with its client’s processes. With all these heavyweight processes, how do we integrate an
Agile approach to software delivery into the Enterprise? How do we create the Agile Enterprise?

Recently I was engaged on an assignment in a technical capacity with a large SI. The SI was to deliver
a £25M solution to a government department, a fairly typical scenario. Being responsible for the manage-
ment and delivery of the project, the SI used their Prince 2 based project management methodology. A
great deal of money was spent on the production of a PID, Functional Specification and other supporting
documentation; some would say this was needless expense; however, when the SI was delivering to a
fixed price, the PID and the Functional Specification became the project bible when the client changed the
requirements. Aiming to practice Agile software development, we should welcome changing require-
ments. Indeed, on this particular engagement, requirements changing on a micro level – such as the minor
alteration of the user interface or a change due to a clarification of the requirements – were welcomed.
However, alteration of requirements that could impact on the delivery timescales, architecture or other
related projects were put through the SI’s change process. Is this an Agile approach?

Integration of Agile techniques into multi million dollar enterprise projects is far from simple. A couple of
years ago I was engaged with a multi-national SI to help roll out RUP to a particular client. While RUP
has its challengers, it can be used to deliver software, and this particular client had determined that RUP
was its methodology of choice. I believe the client is still rolling out RUP. Is this a symptom of the client, the
methodology or the intrinsic nature of an Enterprise? I firmly believe it is in the nature of an Enterprise to
be slow to change: CEO’s may make statements to the market on their “new direction”; the Enterprise
has a shudder in response but rarely changes its direction rapidly. In fairness, CEOs’ of large Enterprises
realise this and the programme for change is rarely expected to deliver in the short term. But where do
Agile processes fit in the programme for change? If a new software development process does not deliver
immediate and observable benefits it, is often changed. How dowe generate the opportunity to introduce
agile processes into slowly changing enterprise and maintain momentum behind them?

This column is called “The Agile Enterprise,” where I’d like people to share their experiences of intro-
ducing agile processes into large projects or large enterprises. Experiences, both good and bad, would help
a great number of us sleep better at night.

ABOUT THE AUTHOR

Andy is an independent consultant specialising in the building of large scale J2EE systems. You can
contact Andy with your articles or article suggestions at andy.winskill@rosewoodsoftware.com

Introducing The Agile Enterprise

Andy Winskill

Page 97

Volume IV; Issue 1

February 2004
Thoughts From Thoughtworks

Alan Francis

A constant debate rages in any public forum where Agile is discussed. Proponents talk about their
projects and how using Agile has contributed to the success. Agile sceptics point to the sweet spot of small
co-located teams with talented people and control of scope and wonder, “who wouldn’t succeed”? While
we are forced to agree that talented people are necessary for project success (whatever the methodol-
ogy), ThoughtWorks has used Agile methods in a variety of different environments and has shown them
to be successful in or out of that sweet spot.

ThoughtWorks projects come in all shapes and sizes.

In terms of size, we’ve used Agile extensively in its sweet spot – small, co-located teams. But we are
known primarily for delivering very large, enterprise-transforming projects, stretching the boundaries
around what kinds of projects can be done using Agile. Our smallest project is probably a one-person
development for a client in Holland…our largest to date features around 100 people spread across 4
teams in 3 countries.

ThoughtWorks also uses Agile methods across a diverse range of technologies. The majority of projects
use either Java or .NET, but we have used Agile methods in environments ranging from embedded soft-
ware for handheld devices to banking software on Mainframes. We’ve introduced TDD into legacy
environments and continuous integration into clients who previously did a complete build once a quarter.

ThoughtWorks is involved in all stages of the project lifecycle.

We’re using Agile principles to define new practices for Analysis. Not every client wants to completely
abandon upfront analysis and we’ve had to integrate Agile with existing methods and practices.

We’ve been working on expanding the range of metrics and tracking processes to allow clients to see
how the project is progressing. New terminology like “stories” and “velocity” can be confusing and it’s
important that clients can track progress and see deliverables in terms they understand.

We’ve been working with testers to try and further define the role of a QA department in an Agile
project. In banks, we’ve been bringing Security and Regulatory personnel into the project teams early on in
the development process.

Over the coming issues of Agile Times, ThoughtWorkers will share their experiences with applying Agile
methods in these varied project environments. We’ll discuss what has worked, where the difficulties have
arisen and what we’ve learned from both the successes and the failures.

Book Corner

Mike Cohn

Balancing Agility and Discipline: A Guide For The Perplexed, by Barry Boehm and Richard Turner,
attempts to breach a conceptual divide between developers following Agile development methods and
developers who taking what the authors call a “plan-driven” approach. The book does an excellent job of
summarizing many Agile methods. The main premise of the book is that Agile and plan-driven methods
each have a “home ground” for which they are the appropriate choice. The central part of the book is
Chapter 5, “Using Risk to Balance Agility and Discipline.” In this chapter the authors present a tailorable
method that can be used to balance what they view as the two extremes of Agility and discipline.

Where the book fails is in the assumption that Agility and discipline are at opposite ends of a con-
tinuum. First, those of us who have worked on Agile projects know that we only achieve Agility through
discipline. More importantly, however, the distinction between Agile processes and heavy-weight processes
is not continuous and an effective process cannot always be achieved by balancing a little more of this
with a little less of that.

Page 98

Volume IV; Issue 1

February 2004
Book Corner

Mike Cohn

For example, self-organizing teams are a fundamental component of what most of us consider an
Agile process. I cannot add a little self-organization to a project. It’s either added or it’s not. I can lighten up
on some aspect of my heavyweight, plan-driven process, but that doesn’t make the process Agile all of a
sudden.

Despite disagreeing with this main premise, I generally agree with the six main conclusions presented in
Chapter 6. For example, the recommendation to “Build your method up—don’t tailor it down” points out
the main flaw I’ve seen with implementations of the Unified Process. Once something gets added to a
process, it is just too easy to keep it. If we build our process up from nothing the results are much more
satisfying than if we start with everything and slowly remove things.

There is much to like in this book. The book is very well written and edited. Illustrations are crisp and
useful. Especially if you are not already using an Agile process, this book will help you identify ways to
lighten your current process and may help you make a switch all the way to agile. While I disagree very
strongly with the main premise of the book I recommend it highly. The book is enjoyable to read and you
will come away from it knowing more about Agile processes.

When I first saw the cover of the book “Slack”, with its colourful slinky toy, I smiled because I’d just
been lamenting the toll exacted on me by my current project. I thought “Slack - I wish!” Tom DeMarco
makes the case that wishing for Slack is not enough, that we must create space for it in our software
development workplaces because, in addition to improving the energy level and morale of our teams, it
improves the products we deliver and ultimately the worth of our enterprises.

DeMarco writes from decades’ experience managing software development, and is respected for his
straight-forward wisdom in management books like The Deadline, Peopleware and most recently
Dancing with Bears (these last two with Timothy Lister). DeMarco reminds us of things we know from
simply “looking around”, things which seem to run counter to the patterns of leadership we’ve been
taught. The Agile movement encourages us to consider “a simpler way”, and this book is a good place to
start, for those of us striving to replace unproductive organisational patterns with more wholesome, more
realistic ones.

It’s a quick read, which is a good thing because by the time I’d reached page 11 I was listing the people
with whom I’d like to share this small book. The writer’s style is conversational but to-the-point, drawing
conclusions through the use of metaphor, diagrams, and examples familiar to almost any workplace. And
although accountability for a project’s outcome ultimately lies with its managers, the book is not addressed
solely to management. It is also intended for the knowledge workers who carry out the work, because
the “slack” solution involves a cultural shift touching at all project participants.

“Section 1: Slack” addresses the inverse relationship between efficiency and flexibility, and the balanc-
ing effect of slack. After providing some simple and convincing examples, DeMarco summarises: “Making
efficient use of workers in the sense of removing all slack from their day has an attendant cost in respon-
siveness and results directly in slowing the organisation down.” And “It’s possible to make an organisation
more efficient without making it better. That’s what happens when you drive out slack” (p. 11).

Balancing Agility and Discipline By Barry Boehm and Richard Turner

Addison-Wesley; $29.99

Book Review: Slack

Deborah Hartmann

Page 99

I enjoyed “Section 2: Lost, but Making Good Time”, because it rang so true. Chapter headings here
include: The Cost of Pressure; Overtime; Culture of Fear; and Process Obsession, in which he discusses the
problems we’ve created by treating development teams like mechanised production lines. Here DeMarco
further addresses the content of his sub-title (Burnout, Busywork, and the Myth of Total Efficiency). He
reflects on those very issues we’ve all commiserated over - practices meant to improve production but
which, in fact, stress teams and reduce their creativity, draining the energy and meaning from their work.

“Section 3: Change and Growth” addresses organisational learning. DeMarco maintains that only
middle management has the proper perspective for this, as other layers of the organisation are too far
from, or too close to, daily operations. Here he discusses leadership and laments the elimination of middle
management, a common quick-fix when cost-cutting is mandated. He argues that the collaboration of
middle managers, as a team, is key to growth and change in our organisations. He maintains that we
must make the space for middle management to question, rethink, learn and improve, if we are to
continue to succeed in the current climate of rapid change.

The book ends with at Risk Management, the “quantitative declaration of uncertainty.” DeMarco
proposes that the Risk Management approach is diametrically opposed to Plan-Driven project manage-
ment, which he calls Plan for Success. “Plan for Success is a staple of management philosophy, particularly
in our high-tech industries. It leads us to pour our desired outcomes into concrete, and make commitments
on achieving those outcomes... It [also] puts an effective damper on risk-taking. An organisation that is
expected to overcome all adversity can’t afford to take on any but the most trivial risks. Conversely, an
organisation that has suffered no important setbacks has in fact taken no real risks.” (p. 187).

I found this last section interesting - since now “even the most staid of today’s corporations know that
risk is something they dare not run away from.” (p. 187) It seems clear to me that this disconnect, between
the very real need for risk-taking and the risk-suppressing philosophies by which we manage, is causing
our enterprises pain. It is wearing out our valuable middle managers and the teams they represent.
DeMarco cites corporate cultures that oblige us “to look ... bosses and clients in the face and lie rather than
show uncertainty about outcomes” (p. 195). Realising this disconnect, I ‘d say that we can no longer wait
for the resulting problems to resolve themselves - they will persist as long as there’s this essential mismatch
between our mental model of how projects work and what really happens in our workplaces. It appears
that we must either adjust our philosophies to match our realities, or reduce our expectations for the
projects to which we are committed.

It is apparent to me that the left side/right side format of the Agile Manifesto physically demonstrates
just such a philosophical shift, the very factor that causes it to be perceived as radical or, by some, extreme.
For those of us who embrace the Manifesto, I think this book could be an important resource. Without ever
mentioning the Agile Software Development movement, this book sows the seeds of openness to new
ways of thinking. I think it could be a spark that starts our colleagues questioning “the way things have
always been done”. It might even give them the courage to work with us to make the space in our work-
places, the Slack, to allow better solutions to emerge – which I’d suggest is the very essence of Agility.

FURTHER READING

Waltzing With Bears: Managing Risk on Software Projects By Tom DeMarco and Timothy Lister

Dorset House

Managing Software for Growth: Without Fear, Control, and the Manufacturing Mindset By Roy Miller

Addison-Wesley Professional

Volume IV; Issue 1

February 2004
Book Review: Slack

Deborah Hartmann

Slack: Getting Past Burnout, Busywork, And The Myth Of Total Efficiency By Tom DeMarco

Broadway; $14.95

Page 100

www.agilealliance.org

Volume IV; Issue 1

February 2004

AGILE MANIFESTO VALUES:

1. Individuals and interactions over processes and tools
2. Working software over comprehensive documentation
3. Customer collaboration over contract negotiation
4. Responding to change over following a plan

While there is value in the items on the right, we value the items on the left more.

