
Agile Embedded Software Development
James Grenning

Wingman Software
April 2013 !

Why should you consider adopting Agile software development practices? Not because it
is the latest buzzword (actually a 10 year old buzzword). You should consider adopting it
because you want to improve. The plan driven approach hides a lot of problems until it is
too late. Ad hoc development does not provide the business with the needed visibility to
confidently plan product releases and rollouts. !
Software development projects often suffer from long development cycles, late delivery,
unpredictable schedules, poor quality, missed customer expectations and developer
burnout. These problems often interact to become a positive feedback loop.
Unpredictable delivery leads to schedule pressure, and unrealistic plans. Schedule
pressure leads to long hours and shortcuts. Long hours lead to burnout. Shortcuts lead to
defects, defects lead to more long hours debugging. Bug removal is an inherently
unpredictable activity leading to even more schedule pressure, shortcuts, defects, etc..
Figure 1 shows some of the interactions software development problems. !

Figure 1 – Vicious Cycle !!!!!!!!!!!!!!!!!!!
!
Agile Embedded Software Development Wingman Software

© Copyright 2013 James Grenning james@wingman-sw.com
All Rights Reserved ! of ! wingman-sw.com 1 22

Schedule pressure

Poor Quality

Debugging
(unpredictable
and unplanned) Mistakes

Late Projects Missed customer
expectations

Long hours

Changing requirements

Unrealistic
plans

Vague
requirements

Lost
Business

!!!!!!
You can see a few positive feedback loops in this vicious cycle. There are scheduling,
defects, and requirements vicious cycles. These are important problems to solve for
which the iterative approach of Agile Development has been shown to be effective. The
specify-design-test-build-test-deploy approach used by waterfall-based software
development lifecycles sounds appealing but has proven time and again to give less than
adequate results. !
Iterative development, one of the core practices of Agile development has been around
for decades. As far back as 1987 Fred Brooks’ as chairman of the Defense Science Board
Task Force on Military Software recommended that the waterfall process be replaced
with iterative development due to waterfall’s history of failure on large DoD contracts.
Iterative development has been used successfully on some very high profile projects from
the 1950’s to present day including: the X-15 rocket plane, project mercury, trident
missile submarine control systems, the space shuttle avionics, and the Canadian
Automated Air Traffic Control System, to name a few. 	
[LARMAN]!
Over the last ten years, agile has been mostly associated with software development other
than embedded. Even though embedded does have its unique and special challenges, we
can and should benefit from Agile development approaches. Yes you are special, but
there is nothing special about some of the problems we share with non-embedded
development. We can learn, benefit and apply agile to embedded.

What is Agile Development?
A good place to start in describing agile development is to see what a group of respected
software developers (which I am lucky enough and honored to be associated with), that
coined the term, had to say about it. The Agile Manifesto says: !
We are uncovering better ways of developing software by doing it and helping others do
it. Through this work we have come to value: !

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan !

!
Agile Embedded Software Development Wingman Software

© Copyright 2013 James Grenning james@wingman-sw.com
All Rights Reserved ! of ! wingman-sw.com 2 22

That is, while there is value in the items on the right, we value the items on the left
more. [AGILEMAN]

!
Individuals and interactions over processes and tools
The first point stresses the importance of human interaction and teamwork. Many
development processes try to take the human element out of software development, but
the agile manifesto’s leading statement is about leveraging the people and their
interactions. Tools are needed, but it is good people, working in teams who build
successful software products. This point is often misconstrued to say that processes do
not matter. Processes and discipline do matter, but people matter more. !
This statement could be misconstrued to suggest that Agile developers get things done by
sitting in a circle and singing Kumbaya. However, there is another interpretation. An
increase in teamwork does not automatically lead to a decrease in discipline. Consider,
for example, the teams at the Skunk works, or Burt Rutan’s team who built
SpaceShipOne to win the X-Prize. These teams capture the intent of the Agile Manifesto
well. While they deeply value discipline and process, they value teamwork even more. !
Working software over comprehensive documentation
The second point stresses the importance of having working software as a measure of
progress. Documents may be valuable, but working software is a more meaningful gauge
of software development progress. I have heard this misinterpreted as, “We’re doing
agile, so we aren’t doing documentation”. That’s baloney! Documents are often
invaluable. Those that are, must be produced. However, documentation is expensive to
create and maintain so it is important to create only those documents you truly need. In
document-centered development, I’ve heard more than once that the reason for the
document is “our process requires it”. This is wasteful. Agile developers articulate and
validate the reasons for documents. They know who the customer of the document is.
Then produce documents if, and when, they are needed and try to find an economical
way to create them. !
Remember also that most documents don’t execute (some do, like test cases); so they
cannot be used as effective measures of project completeness. Agile developers believe
they are 50% complete when 50% of the features of the system have been demonstrated. !
Even though embedded software is often only delivered once, along with the hardware,
does not mean we cannot track our progress by demonstrating progress through working
features. This can be challenging, but necessary to reduce rish and build a feature rich and
robust system.

!
Agile Embedded Software Development Wingman Software

© Copyright 2013 James Grenning james@wingman-sw.com
All Rights Reserved ! of ! wingman-sw.com 3 22

Customer collaboration over contract negokiation
This point addresses the need to work closely with the customer. By customer we meant
the person or persons that are specifying the product and can make trade-off decisions on
features and dates. Ideally the customer is the person using the product, but in mass
marketed products the customer role is internal and indirect at best. Customer interaction
is favored because software is very difficult to completely specify up front.
Requirements and market needs change over time. The customer has to be part of the
team to help make trade-offs and to see what they have asked for. !
Responding to change over following a plan
The forth and final point deals with the reality of any complex endeavor. Plans are
important, but situations change and that require constant adaptation. Plans cannot be
viewed as static, even though specific delivery dates are. This point is often
misunderstood to mean there are no dates or commitments in Agile development. On the
contrary, dates and commitments are taken very seriously in Agile development. Agile
developers create working software in very short cycles in order to measure compliance
to the plan. !
Principles supporting the Manifesto
The Agile Principles back up the manifesto. The principles are: [AGILEP]

!
• Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software. !
• Welcome changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage. !
• Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale. !
• Business people and developers must work together daily throughout the project. !
• Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done. !
• The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation. !
• Working software is the primary measure of progress.

!
Agile Embedded Software Development Wingman Software

© Copyright 2013 James Grenning james@wingman-sw.com
All Rights Reserved ! of ! wingman-sw.com 4 22

James Grenning
negotiation

!
• Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely. !
• Continuous attention to technical excellence and good design enhances agility. !
• Simplicity--the art of maximizing the amount of work not done--is essential. !
• The best architectures, requirements, and designs emerge from self-organizing

teams. !
• At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly. !
Iterations
Agile development is based on iterative and incremental development (IID). IID
provides regular feedback by breaking the project into iterations that are generally one oir
two weeks in length. The output of each iteration is working software. Each iteration is
like a stand-alone project ending after fixed amount of time, and delivering some
executable version of the product. In early iterations the software might only run in a test
environment or prootoype. !
There are two main roles in agile development, the customer role, and the developer role.
Two groups of people usually represents each role. In a few words, the customer defines
and tests the product and the developer builds the product. I will cover these roles more
completely later. !
Embedded software engineers should understand feedback. The control systems we
design always have feedback mechanisms to keep the systems under control. An agile
project is based on iterations that provide feedback to the critical variables of the project:
schedule, requirements, and design. Think of agile as a control system for software
development. !
The team estimates, plans and organizes work into iterations. The regular cadence of
delivery allows a team to establish a velocity that can be measured. Velocity is used to
calibrate the development plan and monitor progress giving valuable management data.
Work is estimated in effort points. For example, if the team is completing about 20
points per iteration and there are 200 points in the backlog, it will take about ten
iterations. If plan only allows eight more iterations, we have some managing to do.

!
Agile Embedded Software Development Wingman Software

© Copyright 2013 James Grenning james@wingman-sw.com
All Rights Reserved ! of ! wingman-sw.com 5 22

Skillfully, we are not in the 11th hour and have options. Maybe its not too late to add a
couple people, move the date out, or remove functionality. !
Requirements are the broken into smaller demonstrable units called stories. They are the
estimate-able, testable, and deliverable units. They are small enough so that many can be
completed within a single iteration. When the developers complete a story the customers
get feedback on the requirements by seeing and touching what has been developed. In
the early iterations, prior to hardware availability some of these stories are demonstrated
through tests and simulations; but the demos are based on real working code. !
By building the software incrementally the developers get feedback on the design as it
evolves. The stories cut across elements of the design provide early integration of
simplified versions of the subsystems giving the developers valuable experience with the
architecture. Something that looks great in UML does not always look so great once it is
coded, and it is better to figure that out sooner than later. !
The incremental or evolutionary design approach is central to Agile development.
Software requirements are constantly evolving. Priorities change. Software is expected
to be used year and after year and evolve along with the market and changing hardware
and technology. So it is essential that code has to be built to last, and that means being
built to change. Designs and code will continue to be changed throughout the life of the
product and consequently there is the ever-present risk of side-effect defects. I’ll
describe alter how agile developers use automated tests that help to lock in the existing
behavior as new features are added. !
Developing iteratively gives the business great power. The approach can be used to
either manage to a specific delivery date, or to manage to specific feature content. The
team’s track record is input used to adjust the plan based on facts rather than wishful
thinking !
In the single-pass waterfall situation, considerable time is spent up front on items that
may never make the final product. In Agile development effort is first expended on the
highest priority features and capabilities, requirements are elaborated in parallel with
development and consequently little time is wasted. Scope is managed at the detail level.
When you have 10 must have features, they are broken into smaller stories, and the
product content is managed at the detail level, deferring less important parts of the critical
features.

Concurrent engineering
Imagine trains running on parallel tracks, one train represents requirements definition and
the others hardware and software development.

!
Agile Embedded Software Development Wingman Software

© Copyright 2013 James Grenning james@wingman-sw.com
All Rights Reserved ! of ! wingman-sw.com 6 22

!!!

!

!

!
The requirements train leaves the station a little before the development train.
Requirements are discovered, refined and handed off while both trains are moving
forward toward the final destination. !
In phased development only one track is needed and the development trains would not
leave the station until the requirements train arrived and wired back the requirements. !

! !
Maybe, just maybe, the development train will go faster knowing all the requirements,
but it will never make up for all the time spent waiting for departure. !
Concurrent engineering is a strategy designed to shorten development time-to-market by
doing development activities in parallel that might have been done serially. Concurrent
engineering is core to Agile, and Agile teams have to be skilled at working incrementally,
without detailed knowledge of the whole picture, to be successful. This takes some
getting used to after having waterfall based project management in the limelight for last
twenty or so years. !
Time to market critical is so we need to find ways to finish development sooner. A way
to finish development sooner is to start building the product sooner. We need to begin
development before all the requirements are known or we will unnecessarily delay the
product. If you think about it, the requirements are never all known up front so what are

!
Agile Embedded Software Development Wingman Software

© Copyright 2013 James Grenning james@wingman-sw.com
All Rights Reserved ! of ! wingman-sw.com 7 22

you giving up! Have you ever been on a project where there were no surprise
requirement changes? The world of changing requirements is the world we have to live
in, so lets master it. !
I’ve seen too many teams paralyzed by not knowing all the requirements. There is a fear
of making mistakes and a belief that we can figure it all out, and then design the perfect
architecture with no false steps or rework. This sounds great but is not practical in the
complex world of product development. So, at the beginning of a product development
effort, we have to identify some of the core features, ones that are important and well
enough understood, and begin development work immediately. Beginning development
will lead us to confront our requirements misconceptions and design flaws. In addition,
and maybe more importantly, the feedback will help us find our blind spots, the unknown
risks and weaknesses we cannot anticipate. Getting development started buys time for
the requirements team to work in parallel on the remaining requirements. Requirements
details are delivered just in time. We can make suer we work on the most critical features
first and get them rock solid. !
Initial implementations explore the requirements and the design thus improving the team
knowledge, clarifying the requirements and solidifying the software design alternatives.
The early development of these high-value/high-risk features provides feedback to the
customer as well as developers. The feedback helps to mitigate the risks of building the
wrong product, or building the wrong architecture. We get executable feedback on
requirements and architecture. !
The uncertainty and risk the team is trying to manage is not limited to software, but also
to hardware and the hardware/software boundary. One way to deal with hardware
uncertainty is for the software developers to wait until the hardware design is complete
and then start the software design. WAIT! Just kidding! I am not recommending waiting!
So, please don’t quote me out of context! !
Embedded developers don’t have to wait for hardware train to get to the end of the track
either; the trains do not have to be coupled. Hardware abstractions are created in the
software that decouples software from hardware. The abstractions define an interface for
interacting with the hardware by defining the service the hardware will provide, without
getting bogged down in volatile implementation details. Hardware abstractions enable
concurrent hardware/software engineering by allowing software development and testing
to start prior to hardware availability. This important practice can also provide input into
the hardware requirements and help define and refine the hardware/software boundary. !
The iterative approach to requirements gathering, risk reduction and development
practices means that changes in customer needs, project goals and hardware architecture

!
Agile Embedded Software Development Wingman Software

© Copyright 2013 James Grenning james@wingman-sw.com
All Rights Reserved ! of ! wingman-sw.com 8 22

are more naturally accommodated. Time to market can be improved by eliminating
wasteful serialization in the development process by engineering the requirements,
software and hardware trains on three parallel tracks. !
The sequential approach may appear to be less wasteful, allowing people to focus on their
part and not starting development until we know everything about what we want top
build. We strive to eliminate rework. !
! !
It is important to consider what we want to optimize. Is it the requirements phase, the
design phase? Neither, we want to optimize product time to market. What if by working
in parallel we could deliver the product sooner, even with some rework as shown in this
next diagram. !

! !
I call the inefficiency hypothetical because most development efforts finish the
requirements and the design the day the product ships. These phases never really end
when we pretend they do. !
Automated Test
The complexity and evolutionary nature of software development means there are many
opportunities to break existing working software. A simple one-line change, carefully
thought out, could bring the system crashing-down months in the future and leave no
evidence of the crash. Side effect defects are common and often do not get discovered
until long after the defect is injected. !
Most product teams rely on manual testing in the real hardware to prove out their system.
Manual tests have a few problems. First and foremost manual tests take a lot of clock
time and are labor intensive. They might require special lab equipment. These realities !
Agile Embedded Software Development Wingman Software

© Copyright 2013 James Grenning james@wingman-sw.com
All Rights Reserved ! of ! wingman-sw.com 9 22

mean that the tests will not be run often enough. What we would really like is a way to
verify each change that is made to the software. If you had a magic button that you could
press that would tell you if your software was operating to specification, how often would
you press that button? I would press it after every change, and I do. !
When you manually test you have to select the test to run and that leaves you with a
growing untested code gap as shown in this diagram. !

! !
Pick any coefficients you like for new-feature test effort and regression-test effort and
you find that a manual test strategy is unsustainable. This means that unless you
automate the bulk of your tests, you will have an ever growing untested code gap. !
Agile teams automate unit and acceptance tests making rerunning tests very cheap. So
cheap that we can run all the unit tests whenever any change is made to the source code.
This is hard to do, especially when you are first learning, but the time saved will
outweigh the time you normally would waste manually testing and debugging.
Automated tests support the concept that new features should not break existing features.
What a concept! I can just hear marketing now, “please add <new feature goes here>
system, and its OK if you break any other random feature, no problem.” Marketing does
not want that, but they might get the idea that software developers think it’s no problem. !
 If you think of the tests as a critical asset of the system, even though they are not shipped
with the system, when you run the tests the system basically reports when it is broken. !
Agile Embedded Software Development Wingman Software

© Copyright 2013 James Grenning james@wingman-sw.com
All Rights Reserved ! of ! wingman-sw.com 10 22

Bob Martin (author of numerous good books on design and agile) tells us having tests is
like double entry accounting, if the sum of the debits does not equal the sum of the
credits, we have a problem. Accountants don’t just sum the credits to save time, they
make sure the books balance with their built in tests. They don’t save time by only doing
the credits, or the debits. They would prefer not to go to jail for messing up the books. !
Where do these tests come from? Who writes them? When are they written? Automated
unit tests are written incrementally by the software developers in a tight feedback loop
with the production code using a technique called Test-Driven Development.[BECK] The
unit tests tell developers if their code does what they intended. My book, Test-Driven
Development for Embedded C, can help you apply TDD to the challenging world of
embedded C or C++. For a shorter introduction to TDD see my Embedded [GREN-TDD]

Systems Conference Paper. [GREN-ET]

!
Automated acceptance tests provide evidence that the system meets its requirements. The
developers and test engineers working with the customer team write automated
acceptance tests. The acceptance tests are written in advance of the iteration where the
development is to be done. This practice changes the role of test engineers in a very
profound way. Rather than drowning at the bottom of the waterfall, at the end of the
project by a deluge of untested software pounding down on them, the test engineers adopt
a proactive role by specifying the behavior of the system in the form of automated tests.
These automated tests provide an unambiguous definition of done. !
These tests are a very valuable investment. They make testing a repeatable process, that
can be run with every change. The tests double as an executable specification. Unit tests
provide examples of how a given module is used at a very detailed level, and provide
feedback to the developer that the code behaves as expected. Acceptance tests
demonstrate how larger groups of modules work together to deliver the product’s
requirements. Acceptance tests are written in a domain specific language so that non-
engineers can read and possible write tests. An open source tool called FitNesse is often
employed for automating acceptance tests. You can find more about this in my
Embedded Systems Conference Paper “Executable Use Cases”. [GREN-XU]

!
As a side note, a very exciting thing about this approach to testing is that our design has
built in hardware isolation from the start. Without the automated test influence, there
would not have been an immediate need for isolating the core software form the
hardware. Often good structuring like this is left out of embedded designs because of
worries about performance. Please see my other conference paper on design for more
discussion. [GREN-DES]

!
Agile Embedded Software Development Wingman Software

© Copyright 2013 James Grenning james@wingman-sw.com
All Rights Reserved ! of ! wingman-sw.com 11 22

Working in iterations
The team delivers working software every iteration. In non-embedded agile development
software may be deployed each iteration every iteration. In embedded incremental
development it may not be practical to release these small increments, especially when
there is concurrent hardware development and high deployment costs. Because value
cannot be delivered each iteration some say that agile cannot be used on embedded
software development. My opinion is different. Instead of delivering value, we provide
visible progress. I don’t mean doing show and tell on what might be build, but rather a
demonstration of real working running software. If real hardware is not available, the
demos are done in the simulation, or evaluation environment. !
Iterations are fixed-duration time boxes. A time box ends when the time is up, it is not
extended when some selected stories are not complete, and it is not ended early when
work gets done ahead of schedule (yes, this happens about as often as getting behind
schedule in a well functioning agile team). !
Iterations are short because people are not very good at estimating long activities. People
are pretty good at a two week planning horizon. So, the long-term plans are made up of a
series of smaller plans with more precision in the current and next couple iterations.
There’s more uncertainty and freedom in the further out iterations. !
Because iterations are short, the work has to be broken into small pieces of functionality
that can be completed within the iteration. We call them stories. The goal of the iteration
is to complete all the planned stories and make the stores’ automated acceptance tests
pass. The stories and their estimates are used in tracking progress against the plan. !
Stories
We will have to look at stories in more depth because one of the big challenges of Agile
development is breaking the system into the stories that allow incremental and visible
progress on the product. Embedded agile development has even more challenges in
defining stories because of the added complexity of hardware/software interactions. !
Stories are usually referred to as User Stories. I prefer to call them Product Stories.
Often the work we do in embedded development is not visible to the end user. the name
Product Story seems to fit better. !
A product story delivers value, shows progress or reduces some risk and can be
completed within one iteration. Usually a story is considered a concise description of
system behavior. In that sense stories are similar to a use case, or parts of a use case. In
use case vocabulary there is the happy path and the variations. The happy path defines

!
Agile Embedded Software Development Wingman Software

© Copyright 2013 James Grenning james@wingman-sw.com
All Rights Reserved ! of ! wingman-sw.com 12 22

what happens when all is well. The variations are also paths through the system that
cover special cases, differing inputs or error cases. In embedded development we have
stories like these but there is other work that does not fit this mold. That work is
concerned with having the software communicates with and control the hardware. These
hardware centric stories can be a challenge to fit into two-week time boxes especially
when starting from scratch as many embedded developers do. !
Lets say that we are integrating a USB port into a security system. In the top-level
requirements, there is an item called “USB port”. This requirement is too high level to be
actionable. High-level requirements have to be broken into stories that describe how the
system uses the USB port. For example:

• Print the event log to the printer
• Backup configuration to USB memory stick
• Restore configuration from USB memory stick !

These behavioral stories provide value to the end user of the system. I don’t see any of
those stories being completed in an iteration unless the underlying infrastructure is in
place. Using traditional practices we might have estimated 3 months to do the USB port
and let a couple engineers go away for 3 months to get the job done. Sending a couple
people away for a few months makes progress less visible and on top of that people are
not very good at estimating big pieces of functionality. The lack of visibility and the
inaccuracy of long-term plans can cause distrust between management and development
and that should be avoided. So we have to make the progress more visible and to do that
we must divide and conquer. !
Divide and conquer is not new to engineering, although an agile team divides differently
than most embedded developers are used to. Traditionally features would be broken
down architecturally with integration after most of the work is done. This makes
intermediate progress difficult to demonstrate because until all the pieces are complete
there is no visible progress to the product stakeholders. With stories we make the process
more visible. !
Hardware integration and test stories are used to demonstrate progress toward the
completion of the big story, or end-user story. When enough of the smaller stories are
completed, the big story is no longer so big because the underlying support is in place.
Here are some example stories that demonstrate progress toward the USB feature
integration and lead to completing the story the end user cares about:

• Talk to USB registers
• Program the device – verify clocks with scope
• Detect when a device is plugged into the USB port
• Detect a printer

!
Agile Embedded Software Development Wingman Software

© Copyright 2013 James Grenning james@wingman-sw.com
All Rights Reserved ! of ! wingman-sw.com 13 22

• Eject a page
• Print a line of text
• Print the event log
• Detect a memory device
• Open/close a file on the memory stick
• Read a file from the memory stick
• Write a file !

Many of those stories are about getting the hardware to do what is needed, and delivering
a series of demos that make the progress visible. In parallel to the hardware dependent
work, the backup and restore functionality could be developed in a hardware independent
manner. Once the memory stick is working in the system, and the hardware independent
backup and restore stories are also working, the big stories finally become small enough
to schedule and deliver. We try to imagine that stories are independent, and many times
we can make them independent by inserting test stubs and making simplifying
assumptions, at least temporarily. But with hardware dependent stories there often is a
specific order. !
You can find out more about stories in my ESC paper “Agile Requirements, Estimation
and Planning – Iteration Zero" !
Test-Driven Development
Test-Driven Development (TDD) is the practice of writing automated test code
concurrently with the production code. The TDD workflow consists of the following
steps : [BECK1]

!
1. Create a new test
2. Do a Build, Run all the tests and see the new one fail
3. Write the code to make the test pass
4. Do a Build, Run all the tests and see the new one pass
5. Refactor to remove duplication
6. Repeat !

Tests are written just before the code that makes the test pass. This is a tight feedback
loop on the order of a few minutes in durations. Writing of the test defines exactly what
the code is supposed to do. Then the code is written to pass the test. Development
becomes a series of small milestones, each with specific feedback on the outcome with
the system incrementally growing in behavior. The automated tests are run every few
minutes providing rewarding feedback on the developer progress. This predictable

!
Agile Embedded Software Development Wingman Software

© Copyright 2013 James Grenning james@wingman-sw.com
All Rights Reserved ! of ! wingman-sw.com 14 22

development workflow replaces the less predictable code, test debug workflow. My other
conference paper goes in depth into TDD. i

!
Dual/multi-target development – Platform independence
Making progress through TDD means that the embedded software must be designed to be
hardware independent. Object Oriented design principles are used to create loosely
coupled software modules whether an OO language is being used or not. The software is
designed to interact with hardware, operating system and other subsystems through
interfaces. Subsystems and modules must be kept independent so they can be tested
before integration in the final hardware. Early in the project, the development system or
evaluation hardware may be the only test vehicles. Testing on the development system or
eval boards allows testing to be done earlier, so that when hardware is ready, less
application problems are found.

Design
Agile design is evolutionary. There is no attempt to completely layout the high level and
detailed designs prior to starting development. This is not to say there is no upfront
design, there is and the amount of upfront design needed varies per project. A project
consisting of a half a dozen developers probably will not need much up front design. A
project made up of several teams of a half-dozen developers will need more up front
design work so that teams work synergistically. !
At the beginning of an agile project is an activity called exploration or Iteration Zero.
During Iteration Zero the project goals are communicated, initial stories are written,
initial hardware/software division of responsibilities is identified and an initial software
architectural vision is created. The architectural vision identifies the system boundary,
and major subsystems. The design shows example commands, queries, and events that
allow one subsystem to collaborate with another. !
The architectural vision is not an exhaustive/comprehensive design document. For
smaller teams it may be recorded on a white board and only take a few hours or a couple
days to establish. For larger teams more artifacts may be needed. The real value of the
architectural design is to share the vision of the design so that the people work toward the
same architecture. !
The architectural vision is not realized subsystem by subsystem with a big-bang
integration at the end. Stories are implemented that cut across the different parts of the
design, initially with modules and subsystems with reduced capability. As more stories
are added to the system the architecture evolves, becoming more and more complete. !
!
Agile Embedded Software Development Wingman Software

© Copyright 2013 James Grenning james@wingman-sw.com
All Rights Reserved ! of ! wingman-sw.com 15 22

Teams tend to be formed around feature areas, rather than architectural components. This
leads to more flexible teams and members that have specialties across different parts of
the architecture. This prevents knowledge silos that are both risky for an organization
and for individuals (what if a key person leaves along with their knowledge silo; what if
some specific technology becomes obsolete and its all the person knows). !
An architectural vision is not cast in stone, it is not rigorously reviewed, approved and
signed off. The agile development team expects that some of the vision will come true,
but parts of it will change and evolve as the team learns more about the requirements and
the design ideas that work well and the ones that have not worked so well. !
Agile development does not prescribe the documentation needed by a development team.
A team may decide that intra-group communications using the team’s white boards are
adequate for effective communications. Multiple team projects or distributed projects
will need more documentation and formality. Software in regulated business such as
medical devices, may have documentation requirements along with the functional
requirements. You must adapt agile to your needs. Also, expect it to evolve as you learn. !
When a document is needed because it is valuable to the team, or required by your
customer, the team will try to find cost effective ways of getting the document. For
example, if an architecture document is needed, the team may first get a working portion
of the architecture coded and tested prior to producing the formal document. The team
first works from a rough sketch of the architecture, and later after confirming the
architecture the team documents it. This keeps the effort to produce and review the
document down. Writing the document in anticipation leads to either an out of date
document at the end of the project, or additional cost of revising the document as the
architecture is revised and made to work. An implication of this approach is that the
architects are also doing implementation. Some skilled designers are needed on every
team.

Release Planning
The customer team works with the development team to produce a release plan, which is
a series of iterations with critical dates identified. Each iteration in the release plan is
made up of a set of stories. Stories are written on note cards to facilitate rearrangement
during the planning meetings. The stories are estimated by the developers and are treated
as independent. Stories are estimated in relative, but unit-less numbers. So the easiest
story usually is assigned a single point and more difficult stories are estimated relative to
that easiest story. So a five-point story is five times as difficult as a one-point story. The
team estimates how many story points it can complete in an iteration, this estimate is
known as the team’s velocity. The stories grouped such that the sum of the estimates of

!
Agile Embedded Software Development Wingman Software

© Copyright 2013 James Grenning james@wingman-sw.com
All Rights Reserved ! of ! wingman-sw.com 16 22

the stories in the iteration do not exceed the teams estimated velocity. Figure 3 represents
a release plan. Each iteration is made up of a stack of stories. !!

Figure 3 – Release Plan !!
As mentioned earlier, after a few iterations the team will develop its velocity, which is the
total of the points of stories actually completed by the team in an iteration. The teams’
velocity is the critical metric that provides feedback on the team’s measured progress.
Figure 4 shows a team’s velocity tracking chart. !!

Figure 4 – Velocity Chart

! !
If the estimated velocity was optimistic, as it usually is, that optimism is checked by the
actual track record of the team. Optimism is good but the business needs to know is the
plan is realistic. Figure 5 shows and burn-down chart which is used to monitor project
progress.

Team Velocity

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10
Iteration

V
 (

S
to

ry
 P

o
in

ts
 C

o
m

p
le

te
d

)

Actual Velocity
Estimated V

!
Agile Embedded Software Development Wingman Software

© Copyright 2013 James Grenning james@wingman-sw.com
All Rights Reserved ! of ! wingman-sw.com 17 22

Figure 5 – Burn Down Chart

! !
The velocity tracking and burn-down tracking can provide an early warning system for
schedule problems, and this early warning gives the team management time to take
corrective actions, such as reducing scope, adding people, extending the date, or possibly
canceling the project. In this chart there is a new batch of requirements introduced in
iteration 5. The velocity showed that the project was likely to be late, so in iteration 8
scope was reduced to 175 point and further to 150 points in iteration 9. !
The most practical variable to control is project scope. With the behavior of the system
having been broken down into stories, there are small bits of functionality that may be
removed and rearranged in the plan. This is a highly visible planning process and this
visibility can be used to remove higher-cost and lower-value stories. No one wants to cut
scope, or delay the project, but knowing that the plan is in jeopardy is critical business
information. !
The nature of agile planning is that long term plans are less precise with more uncertainty
than the short term plans. This sounds pretty natural. (What are you doing next weekend?
What are you doing four months from this weekend?) The upcoming iterations in the
release plan are more detailed and the iterations that are farther out have less precision.
As time goes by the plan becomes more complete and the confidence in the plan
improves. !

Project Effort Burn-down

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Iteration

S
to

ry
 P

o
in

ts

Total Points
Remaining

!
Agile Embedded Software Development Wingman Software

© Copyright 2013 James Grenning james@wingman-sw.com
All Rights Reserved ! of ! wingman-sw.com 18 22

Impact on the organization
Agile development involves more than just technical issues. The iterative nature of Agile
impacts the whole development organization. Companies that view Agile as just solving
technical problems will probably fail at agile adoption. The most successful adoption of
agile happens when management and development are both interested in solving the
problems of late projects, inaccurate estimates, and low quality. Specifications, schedule
dates, and plans cannot be thrown over the wall to development. Management and
development must work together to steer the project to a successful delivery within the
constraints articulated through requirements,

resources, and dates.

To steer a development team, a customer team is needed. A product
manager usually leads the customer
team with support from test engineers,
product specialists, or systems engineers.
When there is hardware/software interaction, having hardware engineering represented
on the team is also needed. The hardware engineers often help identify the hardware
integration stories needed to realize the product. !!
Communications
Agile teams embrace communications. The often use these practices and meetings to
keep the team on the same page:

• Iteration Zero - at the beginning of a new release
• Periodic release planning – as needed
• Iteration review – every two weeks, usually immediately followed by iteration

start.
• Iteration start – every two weeks
• Daily standup meeting – every day, fast !

Questions at the daily standup
• What did you do yesterday?
• What do you plan to do today”
• What is in your way? !!

Agile Embedded Software Development Wingman Software
© Copyright 2013 James Grenning james@wingman-sw.com

All Rights Reserved ! of ! wingman-sw.com 19 22

Release 1 Release 2

During the standup meeting, people stick to the quick agenda and may offer to stay after
to discuss issues further. Staying after is optional, respecting everyone’s time. !
Continuous Improvement
During the iteration review meeting, the previous iterations stories and acceptance tests
are reviewed, and velocity recorded. Teams also do a iteration retrospective. The team
answers these questions:

• What went well?
• What problems did we have?
• What should we do differently? !

Teams build continuous improvement into their regular development cycle.

Final Words
We’ve done a quick overview of Agile Development. You probably recognize many of
the practices of Agile Development. Agile is not new, some of these practices have been
around for decades and have been very successful. Developers, business stakeholders,
and end users should see improved schedule performance and product quality.
Developers should feel the accomplishment of regular feedback of iterative development,
TDD, and spend a lot less time chasing bugs. Business stakeholders should see improved
predictability and visible fact-based management data. !
There are some other very good references on agile development practices.

• Beck, Kent, Extreme Programming Explained
• Cohn, Mike, Agile Estimation and Planning
• Cohn, Mike User Stories Applied
• Martin, Robert, The Principles, Practices and Patterns of Agile Software

Development
• Martin, Robert, Clean Code !

Some of my work
• Test-Driven Development for Embedded C
• Papers: http://renaissancesoftware.net/papers.html
• Blog articles: http://renaissancesoftware.net/blog !

Agile development can also be found by other names, such as:
• Extreme Programming
• Feature Driven Development (FDD)
• Scrum
• Crystal Clear

!
Agile Embedded Software Development Wingman Software

© Copyright 2013 James Grenning james@wingman-sw.com
All Rights Reserved ! of ! wingman-sw.com 20 22

• DSDM
• !

!
Agile Embedded Software Development Wingman Software

© Copyright 2013 James Grenning james@wingman-sw.com
All Rights Reserved ! of ! wingman-sw.com 21 22

!
Agile Embedded Software Development Wingman Software

© Copyright 2013 James Grenning james@wingman-sw.com
All Rights Reserved ! of ! wingman-sw.com 22 22

 Larman, Craig and Basili, Victor, Iterative and Incremental Development, a Brief History, IEEE [LARMAN]

Software, June 2003 Cover article

 http://agilemanifesto.org [AGILEMAN]

 http://agilemanifesto.org/principles.html [AGILEP]

 Grenning, James. Test-Driven Development for Embedded C, Pragmatic Bookshelf, 2011 [GREN-TDD]

 (www.pragprog.com/titles/jgade)

 Grenning, James, Test-Driven Development for Embedded C, Why Debug?, ESC-1004, [GREN-ET]

 Boston, 2012

 Grenning, James, Testing Embedded Software with Executable Use Cases, ESC-4020, Boston [GREN-XU]

2012

 Grenning, James, Object Oriented Design for Embedded Software Engineers, ESC-209, San Jose [GREN-DES]

2007

 Beck, Kent, Test-Driven Development, Addison Wesley, 2002 [BECK1]

These and other papers by James Grenning can be found here http://renaissancesoftware.net/papers.html

http://renaissancesoftware.net/papers.html

