
Progress before hardware

By: James Grenning
!
A common problem facing embedded software engineers is the concurrent development
of hardware and software. The embedded software engineer does not have a test bed for
their work often until late in the project. I have seen too many project plans that show an
integration and test phase late in the project where hardware and software are brought
together. Those integrations usually end up turning into seemingly endless debug
sessions. We may tell ourselves that this project will be different, that we can integrate,
test and ship in two weeks. But we’d be kidding ourselves. !
Embedded systems expert Jack Ganssle says “The only reasonable way to build an
embedded system is to start integrating today… The biggest schedule killers are
unknowns; only testing and running code and hardware will reveal the existence of these
unknowns.” Jack goes on to say that “Test and integration are no longer [GANSSLE]

individual milestones; they are the very fabric of development.” !
Does the lack of the target platform mean we cannot test our code? Does that keep us
from following Jack’s advice and the advice from the agile development community?
The answer to these questions is a resounding “No!”. In this article I’ll describe how to
make progress prior to hardware availability. !
Embedded Software Development
Developing software is hard. Too often projects are late, with poor quality and
inadequate feature sets. Embedded software development shares some of the same
problems with non-embedded software development, but it also presents some additional
problems. The development machine architecture and operating environment are often
different from the target machine. The hardware for the target machine is usually
developed concurrently with the software, and therefore not available until late in the
project. The hardware may go through several iterations, changing in ways that confound
the software systems. There may be real-time constraints, concurrent processing, and
safety issues. Typical human-computer interfaces are not used and the computer
operating the machine is hidden from the user. Resource constraints such as limited
memory space or processing power are the norm. !
Practices
Test driven development and object oriented design are two practices that can help make
concrete progress early in the embedded software development cycle. Test driven

Progress Before Hardware James W. Grenning
V1.0 January 26, 2004 james@wingman-sw.com
Copyright © 2004 All Rights Reserved ! of ! 1 7

mailto:james@wingman-sw.com?subject=

development is an incremental technique for concurrently writing and testing code. In
this article we’ll look at applying TDD to embedded development. !
Object Oriented Design is not a new technology, but it is a poorly understood and
therefore an underused technology in the embedded development world. Object oriented
languages like C++ or Java really enable this technology, but the ideas behind OOD ideas
can be implemented in procedural languages such as C. !
TDD and OOD can give the embedded software engineer some advantages. One specific
advantage is designing, coding and testing prior to target hardware availability. I’ll
discuss how you can make significant progress by testing on your development machine.
This implies using a portable programming language. If your environment is so
constrained that you must develop in assembler you may not be able to use all the advice
in this paper.

Development Environment and Execution Environment
In embedded systems the development environment usually differs from the target
execution environment. I can buy a development environment at the local computer store
or on the net. I can buy compilers, debuggers, source control tools, word processors and
other tools for my development environment. Development environments are relatively
cheap. On the other hand the target is custom made. Maybe the target is a cell phone, an
engine controller, or a high speed color printer. I can’t go down to the local computer
store to buy that platform. Target systems are limited and expensive. !
I’ve seen prototype hardware that cost over $1 million. This results in the engineering
team having a one to many ratio of target machines to developers. A limited resource
means sharing and sharing means waiting. Waiting kills productivity. Even with access
to target hardware development time is slowed whenever we test on it. Downloading and
running in the target takes time, and it’s a tough environment to debug in. !
That said, testing in the target is necessary, but not always possible or practical.
Fortunately, there are alternatives. You may be able to run in a simulator, a limited
hardware prototype, or your development system. !
Simulators
Simulators can be very expensive and complicated. Simulation can be done at many
different levels. We can simulate the processor. We can simulate the behavior of the
environment. A comprehensive simulator can rival the target platform in complexity.
Later in this paper I’ll describe an alternative that I call a scenario simulator. !
Progress Before Hardware James W. Grenning
V1.0 January 26, 2004 james@wingman-sw.com
Copyright © 2004 All Rights Reserved ! of ! 2 7

mailto:james@wingman-sw.com?subject=

Limited Hardware Prototype
If you cannot have the full-fledged prototype, a limited hardware prototype is very useful.
The limited prototype would be very close in design to the target, but would not have all
the capabilities of the target system. Maybe it’s the target processor with none of the
special IO. !
Using a prototype can have a very positive impact. Only part of the IO is available, so it
will be necessary to build hardware independence into your design. This is one way that
Object Oriented Design fits in. OOD allows the definition of interfaces, isolating one
part of the system (the main application logic) from some other part of the system (the
hardware implementation). !
A limited prototype is a very valuable and necessary tool when the full target is not
available. This prototype may suffer from the same problems as the actual target. It may
be expensive, not ready, buggy, or slow for download and test. What’s an engineer to do?
Perhaps we can focus our testing efforts on the development system. !
Development System as a Test Bed
I’ll start out with a claim: significant progress can be made on the development system.
With isolation from hardware and operating system dependencies much of your
embedded application can be tested on your development system. You’ll need to be able
to compile and generate executables for the development system as well as for the target. !
How does this work? The development system does not have the specialized IO that the
target has. How can you test it? What does running it on the development system mean? !
One key to solving this problem is to design in hardware independence using OOD. The
idea we started talking about a few paragraphs ago. The second key is Test Driven
Design. !
Object Oriented Design
When thinking about Object Oriented Design (OOD) think interfaces. An interface can
be defined that describes how to interact with some hardware provided service. The code
in the layer above the hardware isolation layer can be designed to have very limited
knowledge of the underlying hardware. In C++ a class is defined that specifies the
calling conventions of the interface and reveals none of the details. The main application
code interacts with the execution environment through a set of interfaces. The
application code can interact with the real hardware or some stand-in for the hardware
that obeys the same interface.

Progress Before Hardware James W. Grenning
V1.0 January 26, 2004 james@wingman-sw.com
Copyright © 2004 All Rights Reserved ! of ! 3 7

mailto:james@wingman-sw.com?subject=

!
This UML diagram illustrates part of a home security system called HomeGuard. The
logic in the HomeGuard class understands what it means to be a home security system. It
knows the incoming events (window intrusion) and it knows how to report the security
system state to its front panel. It does not know that when you write a one to address
0xFDAF00, bit 3 that the alarm will start sound. The presence of the FrontPanel
interface means we can create other implementations of the FrontPanel. For instance we
could create a LoggingFrontPanel that prints the changes to the FrontPanel to a log file

Test Driven Development Cycle
Test Driven Development is a state-of-the-art software development technique that results
in very high test coverage and a modular design. In TDD we try to test each function in
isolation and incrementally build larger groups of collaborating functions and classes to
provide the desired functionality. Tests come in layers. The need to test in isolation
means we have to decouple one part of the system from another. Interfaces are one of our
tools. Interfaces are used to decouple the parts of the system from each other. !
Notice the structure of the test code and application code below. The HomeGuardTest
class defines the tests (only one shown by name). HomeGuard encapsulates the security
system rules. The FrontPanel describes what can be asked of a front panel. The
Model4200FrontPanel implements the FrontPanel interface and knows how to interact
with the hardware. But what is a MockFrontPanel? It is a test stub. It is part of the test
code. When HomeGuardTest wants to test the break-in scenario, it binds HomeGuard
with a MockForntPanel. The MockFrontPanel can intercept messages meant to go to the
front panel so HomeGuardTest can see if HomeGuard has responded per the
requirements. The test can interrogate the Mock Object] to see what state it is [MACKINNON

in. The practice of testing helps to improve modularity. Modules are tested in isolation
and in collaboration with other modules. Between the test and the Mock Object we are
creating a simulator for a specific scenario. !

!
Model4200
FrontPanel

HomeGuard
+ windowIntrusion()

<<interface>>
FrontPanel

+ displayMessage()
+ soundAlarm()

Progress Before Hardware James W. Grenning
V1.0 January 26, 2004 james@wingman-sw.com
Copyright © 2004 All Rights Reserved ! of ! 4 7

mailto:james@wingman-sw.com?subject=

!
The window intrusion test looks like this: !

! !
Embedded TDD Cycle
Kent Beck, author of Test-Drive Development by Example describes the TDD cycle [BECK]

as: !
1. Quickly add a test
2. Run all the tests and see the new one fail
3. Make a little change
4. Run all the tests and see the new one pass
5. Refactor to remove duplication !

This cycle is designed to take only a few minutes. Every few minutes you find out if the
code you just write is doing what you want. Is such a rapid feedback cycle feasible in
embedded development? Let’s look at some possibilities. !

!
Model14200
FrontPanel

!
MockFrontPanel

HomeGuardTest
+ testBreakIn()

HomeGuard
+ windowIntrusion()

<<interface>>
FrontPanel

+ displayMessage()
+ soundAlarm()

TEST(HomeGuard, WindowIntrusion)
{
 MockAlarmPanel* panel = new MockAlarmPanel(); !
 HomeGuard hg(panel); !
 hg.arm();
 hg.windowIntrusion();
 CHECK(true == panel->isArmed());
 CHECK(true == panel->isAudibleAlarmOn());
 CHECK(true == panel->isVisualAlarmOn());
 CHECK(panel->getDisplayString() == "Window Intrusion");
}

Progress Before Hardware James W. Grenning
V1.0 January 26, 2004 james@wingman-sw.com
Copyright © 2004 All Rights Reserved ! of ! 5 7

mailto:james@wingman-sw.com?subject=

When and where are these tests run? The short answer is as often as possible and
anywhere you can. Let’s look at a few different situations: prior to target hardware,
limited prototype hardware available and full target hardware available. !
If it is early in the project cycle and we do not have target hardware, we could run our
tests on our development system, with interfaces mocked out to isolate the application
from the hardware. We could use the development system’s native compiler. This
sounds dangerous due to compiler variation; so, I would add another step to the
embedded TTD cycle: periodically compile with the target’s cross-compiler. This will
tell us if we are marching down a porting problem path. What does periodically mean?
Code written without being compiled by the target’s compiler is as risk of not compiling
on the target. How much work are you willing to risk? A target cross-compile must be
done at least before any check in, and probably whenever you try out some new language
feature you have not compiled before. !
Once we have a limited prototype, we’ll continue to use the development systems as our
first stop for testing and periodically compile for the target as above. We get feedback
more quickly and have a friendlier debug environment. Now we’ll periodically run the
unit tests in the prototype. This assures that the generated code for both systems works
the same. The test should be run at least prior to check-in, and more frequently based on
how long it takes and how much work is being risked. !
If some of the real IO is available on the limited prototype we’ll start to add some tests
for the hardware or that use the hardware. Automated tests are more difficult to create
when the real hardware is being used. The tests may involve external instrumentation or
manual verification. We want to make our tests easy to run or they will not be executed.
This leads to a design where the hardware dependent code is very thin. Our goal is to
automatically test most of the system. !

!
The discussion for the full target hardware is much like the discussion for the limited
prototype; except that now we can do end-to-end testing. Ideally the end-to-end testing
would be automated, but this is often difficult to achieve. One big challenge in end-to-end

1. Add a test
2. See new test fail
3. Make change
4. See new test pass
5. Refactor

1. Compile
for target

2. Fix

1. Run unit
tests in
target

2. Fix

Embedded TDD Cycle

1. Run
manual
tests

2. Fix

Progress Before Hardware James W. Grenning
V1.0 January 26, 2004 james@wingman-sw.com
Copyright © 2004 All Rights Reserved ! of ! 6 7

mailto:james@wingman-sw.com?subject=

testing is running the system through all the scenarios it has to support. Rare scenarios
have to work, but how do we get the system into a particular state and have the right
triggering event to occur? Controlling the state and triggering certain events will be easier
in our test environments. Our Mock Objects can be instructed to give any response
needed to exercise the code. A common place to end up is that the end-to-end test is a
subset of all the supported scenarios that demonstrate that the parts of the system are
talking to each other properly. A combination of automated and manual tests is needed.
The development systems tests never become obsolete, even though the real test bed is
available. !
Summary
Using Object Oriented Design Test Driven Development can provide embedded software
engineers a valuable test bed for their software. These techniques can be used almost out
of the box for embedded software development. But some additional steps are needed. If
I have made this sound too easy, keep in mind that there are some significant challenges
that have not been covered: issues of concurrency, timing constraints, testing a large
application and how this fits in the bigger picture. I’ll address these issues in another
paper.

Progress Before Hardware James W. Grenning
V1.0 January 26, 2004 james@wingman-sw.com
Copyright © 2004 All Rights Reserved ! of ! 7 7

 Ganssle, Jack, The Art of Designing Embedded Systems, Butterworth-Heinemann, Woburn MA, [GANSSLE]

p.48

 Tim Mackinnon, Steve Freeman, Philip Craig, Endo-Testing: Unit Testing with Mock Objects [MACKINNON

(tim.mackinnon@pobox.com, steve@m3p.co.uk, philip@pobox.com)

 Beck, Kent, Test Driven Development By Example, Addison Wesley, 2003, P.1[BECK]

mailto:james@wingman-sw.com?subject=
mailto:philip@pobox.com

