
!

 !!!!!!!
Scenario Testing with  
Executable Use Cases

James W Grenning
james@wingman-sw.com
wingman-sw.com
!
Originally Presented to Embedded Systems Conference
ESC-4020
Boston 2012 

Wingman Software	 Embedded Systems Conference ESC-4020	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 Boston 2012	 www.wingman-sw.com

mailto:james@wingman-sw.com
http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

!

Introduction	 2
Manual Testing is Unsustainable	 2
Retest Time Must be Close to Zero	 3
Use Cases	 4

Use case example	 5

Use Cases in a Typical Development Flow	 6

Use Cases and User Stories	 6

FitNesse Tests, a.k.a. Story Tests, or Executable Use Cases 	 7
Editing a FitNesse Test	 9

A Passing FitNesse Test	 10

A Failing FitNesse Test	 11

What is being tested?	 11

Product with Testable Architecture	 12
FitNesse Test Architecture	 13

Where do these tests run?	 13

FitNesse/CSlim Fixture Examples	 14

FitNesse Test Suites	 18

Progress Tracking	 19

When Something Bad Happens	 20

When Fixtures are Broken or Not Ready	 20

How Would You Like to Manually Test This?	 21

Summary	 21

Bibliography	 23

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 1

http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

Introduction
Manual testing of embedded software is unsustainable for all but the simplest products. Waiting until the end
of the development cycle is a recipe for unpredictable cycles of test and fix. Testing must be done
incrementally and the bulk of a product’s tests must be automated. This paper presents a simple model of
why manual test is unsustainable and look at an alternative, the executable use case. We compare use
cases to the most commonly used technique to manage requirements in an Agile development effort, user
stories. Then we explore using an open source story testing tool, FitNesse , to test specific product 1

scenarios or use cases.

Manual Testing is Unsustainable
Software is fragile, as is natural for discrete systems. An apparently simple change can result in unintended
consequences, affectionately known as bugs. A single wrong bit can cause disaster. Software is complex;
people programming computers make mistakes. Mistakes can go unnoticed for long periods of time, but
eventually show themselves as bugs.

Because of these realities of software development, we need to retest software with every change. To
prevent defects, we have to test frequently to uncover mistakes before they become bugs.

This simple model of test effort assumes that the test effort for a new feature is proportional to the
development effort.

"

The model is wrong, but conservative. Some features have a higher test burden and some lower. Let’s just
agree that the model is weak and assume there is some average test load that is proportional to the new
feature development effort.

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 2

 Pronounced like fitness.1

http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

The first model does not take into account the retest time for features implemented in previous development
iterations. So, let’s adjust the model. Assume that the retest time is 50% of the original test time. It is less
than 100% because new test procedures are not needed.

"

Whether these relationships are precisely correct or not, the two people that are doing test for the ten
developers quickly get swamped and have to make tradeoffs. They test the new features and make
educated guesses on what to test from previous iterations. Defects start to build up because a complete
test is not affordable, and mistakes go undetected. A test strategy based on manual regression tests is
unsustainable.

Retest Time Must be Close to Zero
A sustainable process needs to invest in automation. Retest time needs to be close to zero. What if an
automated test procedure can be created and run in only twice the effort needed to create and run the
manual test procedure? We get a sustainable test effort, with very low retest time.

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 3

http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

"

Again, the coefficients in this model are probably wrong, but with an almost zero retest cost retest can be
thorough and inexpensive at the same time.

Use Cases
A popular technique for specifying system behavior is the use case. Alistair Cockburn’s book, Writing
Effective Use Cases, is the definitive work on use cases. [COCKBURN1]

A use case specifies a usage or behavior scenario. They don’t always refer to just human users, but could
be uses by other systems or other components in the same system. Alistair suggests providing this (and
other not shown) information when documenting use cases: [COCKBURN2]

Use Case: <number> <the name should be the goal as a short active verb phrase>
CHARACTERISTIC INFORMATION

• Goal in Context: <a longer statement of the goal, if needed>
• Scope: <what system is being considered black-box under design>
• Level: <one of: Summary, Primary task, Subfunction>
• Preconditions: <what we expect is already the state of the world>
• Success End Condition: <the state of the world upon successful completion>
• Failed End Condition: <the state of the world if goal abandoned>
• Primary Actor: <a role name for the primary actor, or description>
• Trigger: <the action upon the system that starts the use case, may be time event>

MAIN SUCCESS SCENARIO
• <put here the steps of the scenario from trigger to goal delivery, and any cleanup after>
• <step #> <action description>

EXTENSIONS
• <put here there extensions, one at a time, each refering to the step of the main scenario>
• <step altered> <condition> : <action or sub.use case>
• <step altered> <condition> : <action or sub.use case>

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 4

http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

SUB-VARIATIONS
• <put here the sub-variations that will cause eventual bifurcation in the scenario>
• <step or variation # > <list of sub-variations>
• <step or variation # > <list of sub-variations> !

Use case example
In this paper I’ll use a home automation system as an example. Here is an example use case for scheduling
lighting controls.

You can see that this use case starts out rather general, then gets more specific in the extensions and
variations.

Information Description

Name Schedule light control
Goal Allow system users to schedule lights to turn on, off, or dim
Preconditions System has controllable lights attached
Success End Condition The scheduled light has been controlled
Failed End Condition The scheduled light has not been controlled
Primary Actor Home owner
Trigger Scheduled time is reached
Main Success Scenario 1.The home owner schedules a light to turn on at a specific

time on a specific day

2.The scheduler wakes up at the right time of the right day

3.The light scheduled for this minute is turned on
Extensions/Variations 1a. Homeowner can schedule the light to turn on

1b. Homeowner can schedule the light to turn off

1c. Homeowner can schedule the light to set to a dim level

1d. Homeowner can specify weekend schedule

1e. Homeowner can specify weekday schedule

2a - Scheduler does nothing when it wakes up when there
are no scheduled controls.

3a - Light is turned on when on is scheduled

3b - Light is turned off when off is scheduled

3c - Light is set to a specified level when dim is scheduled

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 5

http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

Use Cases in a Typical Development Flow
Use cases are usually written by technical marketing, systems engineering, or some other group that is
responsible for specifying the product in the organization. The use case is handed off to development and to
test, both doing their best to meet the intended need. Test uses the use case to develop test cases. They
often contain much of the same information. My “ah ha!” moment... Maybe the detailed use case should
never be developed. Stories name each part of the feature, while story tests can provide example data and
detail to drive development. The test cases are executable, so unlike a prose description, they can play a
part in keeping the code working and meeting its requirements. This approach also eliminates duplication
and error prone translation of use cases to test cases.

Use Cases and User Stories
In agile development, we use user stories as the schedule-able unit of work. A user story is the name of
some feature or a part of a feature. Like a use case, it is something the system should do.

In embedded development I find it useful to refer to user stories as Product Stories, as the user is not always
evident for some of the stories that drive embedded development (See my other paper for ESC-404 http://
renaissancesoftware.net/papers.html)

Think of a product story as a really light use case, so light that all is left is the name of the use case or the
extension. Stories are vague. Stories are often written on notecards, at least initially. Here are some of the
stories that could replace the “schedule light control” use case.

" " "

" " "

" "

Weekend Light
Schedule

Specific day Light
Schedule

Weekday Light
Schedule

Everyday Light
Schedule

Everyday-but
Light Schedule

US Holiday Light
Schedule

Schedule Dim-able
Light

Chinese Holiday
Light Schedule

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 6

http://www.wingman-sw.com
http://renaissancesoftware.net/papers.html

Testing Embedded Software with Executable Use Cases	 ESC-4020

Story details come from conversations with subject matter experts, specs if you have them and from test
cases. Sometimes story details are written on the back of the cards, and describe how to test the story.
Tests define what it means for a story to be done.

" "

Think of a story as a token for the feature. Stories are useful for planning an iteratively developed product. It
is a reminder that we have to dig deeper. In a use case centered approach the activity of use case
identification attempts to get a broad view of the development effort by naming all the use cases. Story
writing is a similar activity. On a priority basis, use case identification if followed by incrementally elaborating
use cases. This activity is where the details are brought in. I am proposing doing the details in an executable
form, story tests in FitNesse.

FitNesse Tests, a.k.a. Story Tests, or Executable Use Cases
The story details are worked out just-in-time, keeping an iterative development effort moving towards its
release goals. The just-in-time approach allows elaborating requirements concurrently with the development
effort.

FitNesse is a tool for writing story tests. There are two main aspects to FitNesse. [FITNESSE]

• It is a wiki that supports team collaboration and composition of test cases and other shared content. 2

• It is a test execution engine that takes specially formatted wiki pages (test pages), interprets them and interacts
with the system under test (SUT)

• Initializing the SUT
• Feeding in event scenarios to the SUT
• Checking responses from the SUT !

Lets look at a FitNesse test case. This is the test case scenario where a light is scheduled to turn on every
Monday at 7:30.

Specific day Light
Schedule

Schedule a lights to turn on a specific day at 8PM

At the scheduled time, on the scheduled day
- light is turned on
- otherwise it is unchanged

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 7

 A wiki is an easily edited website used for collaboration.2

http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

"

This is a screen shot from a browser page in the FitNesse wiki. The text in the tables are test instructions
and data. Free form text, the text not in a table, can add context and explanation. The executable use case
goes a step further than the use case text by providing specific test data. Some think of story tests as
specification by example.

FitNesse pages are written in a very regular language, a language you customize to your application needs.
This is called a Domain Specific Language. All the data pertinent to scheduling a light to be turned is
specified in the test case. The test case assures the light does not turn on at 7:29, or 7:31, but does turn on
at 7:30 on Monday.

Systems are usually specified using generalizations, with occasional dives into the detail showing examples.
Though systems are never used in a general way, they are always used in specific ways. Tests can’t be
executed in a general way. They must exercise specific scenarios.

FitNesse tests specify the details in the test tables, and allow the high-level, or more general ideas to be
expressed as plain text.

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 8

http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

Editing a FitNesse Test
A page can be edited by pressing the edit button on the wiki page. The edit window for the
LightShouldComeOnAtTheRightTime test looks like this.

"

The vertical bar character (“|”) is wiki markup language for a table column separator. You can see the
freeform text before the table in this example. There can be multiple tables in a test page and multiple
freeform comments. There are other markups but they are not essential to understanding how to define a
test case in FitNesse.

FitNesse pages are organized in a hierarchy of pages. This page hierarchy above
LightShouldComeOnAtTheRightTime is

	 HomeAutomationTests. LightScheduler. TestSuite

In the example test case you might have noticed Set Up and Tear Down. These are special named pages
that get automatically included in a group of related test cases. In the example, the set up page tells the
Home Automation system to Start up, while the tear down page tells the Home Automation system to Shut
down. Each test is an independent run, not leaving any history for other tests to depend upon.

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 9

http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

A Passing FitNesse Test
Fitnesse tests can do a number of pass/fail checks. The test is run by pressing the test button on the wiki
page (not shown). The passing test looks like this:

"

The green highlighted fields indicate where there are successful return values. The essence of this test is in
the three green areas on the right. The light did not change a minute early or late, but turned on at exactly
the right minute.

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 10

http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

A Failing FitNesse Test
FitNesse tests graphically show when a test is failing.

"

The red highlight shows that the light was expected to be on, but was unchanged. If a development group is
provided a test like this before the work to support the feature is done, it is normal to see FitNesse tests fail.
When this test passes, and the code is well structured, the story is done.

You are probably wondering what is really being tested. No lights went on or off, and it’s not Monday around
7:30.

What is being tested?
In this example the core application logic (part of the production code) is being exercised. The design
supports an API for scheduling light operations. The design also has separated clock and hardware
dependencies so that the core application can be tested independently of the hardware and operating
system environment. A system must be designed to support tests like these.

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 11

http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

Product with Testable Architecture
When a product is not designed for test, core application logic often has direct dependencies on the
hardware and operating system. For some tests that means spending your Friday night in the lab to see if
the light comes on at 8PM, or continually messing with the clock. The dependencies can be hard to break.

If the system is architected for automated test, the core application communicates to its environment
through interfaces as shown in the diagram below.

"

With the core application talking to the hardware and OS through interfaces, test implementations can be
substituted for a test build. This diagram illustrates how a product is configured during test. Production
drivers are substituted with drivers that can simulate input and capture outputs.

"

The test agent can generate events and capture responses at appropriate test points near the edges of the
system and between subsystems. A test controller tells the test agent the events to simulate and the system
states and responses to collect. Let’s see how to use FitNesse to create a Test Controller and Test Agent.

The Net

Core Software

Core Software

Test scripts

Test
Agent

Test
Controller

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 12

http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

FitNesse Test Architecture
Let’s look at the LightScheduler component when put into a FitNesse based test harness.

"
The Light Scheduler, the application’s bit of gold, is in a test fixture. A Light Scheduler Fixture interacts with
API to program the scheduler. The fixture also simulates a one minute periodic wakeup call to the scheduler.
When there is a wakeup call, the scheduler checks the time and when there is a light to be controlled it tells
the Light Controller to turn on or off a light. Notice that the scheduler talks to the OS and hardware through
interfaces, so that during tests the fixture can control the clock and capture system responses.

The Test Controller is made up of the wiki pages and FitNesse server, while the Test Agent is made up of the
CSlim Library and the Fixtures. [CSLIM]

Briefly, it works like this: When someone presses the Test or Suite button on a FitNesse test page, FitNesse
reads the test page and converts the test instructions into its SLIM protocol. The SLIM protocol drives
remote function invocations through a socket connection, letting FitNesse talk to your application.

The CSlim library is a C implementation of the FitNesse/SLIM protocol. CSlim can be used with C or C++.
There are SLIM implementations for other languages as well. Your application specific fixtures register with
CSlim. CSlim waits dutifully for connections and SLIM messages, which call functions in the fixtures which
stimulates the system under test and reports the SUTs reactions to the FitNesse wiki server.

Where do these tests run?
The tests can be run any number of places. An effective test strategy is to run the FitNesse based scenario
tests on the host development system, rather than the target hardware. This helps to keep test fast and
easy to run. It also results in a better design where hardware, OS, and component dependencies are well
managed.

<<interface>>
Time Service

+ GetTime()
+ SetPeriodicAlarm()

Light
Scheduler

Fixture

Light
Scheduler

+ ScheduleTurnOn()
+ RemoveSchedule()
+wakeUp()

<<interface>>
Light Controller

+ On(id)
+ Off(id)

Light Controller
Spy

Fake
Time Service

<<implements>> <<implements>>

FitNesse
Wiki
Server

CSlim
Library

<<socket>>FitNesse Test Pages

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 13

http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

Because the Fitnesse wiki server communicates with the CSlim library though a socket, the CSlim library and
the application’s fixtures could also run in the target hardware. You could also adapt the CSlim library to use
some communications mechanism other than a socket if a socket is not available.

FitNesse/CSlim Fixture Examples
Let’s look at what is on a FitNesse page that interacts with the Light Scheduler.

"

The first row identifies that the table is a script named the Light Schedule Script. FitNesse transforms “Light
Schedule Script” into the name LightScheduleScript. Here is a code snippet that defines the
LightScheduleScript and two of its functions.

"

The macro SLIM_CREATE_FIXTURE defines the fixture and the macro SLIM_FUNCTION defines each of its
functions. The fixture and functions are wired into a lookup table that the CSlim library uses to interact with
the fixture. The functions schedule_ForLight_WhereDayIs_AndTimeIs and
transitionTo_At_ThenLight_ShouldBe are declared earlier in the same file.

Look at the second row of the FitNesse test table. The first, third, fifth, and seventh fields in the table are
mangled into the function name schedule_ForLight_WhereDayIs_AndTimeIs. The even numbered fields
are positional CSlim parameters passed to the function in CSLIM data lists.

schedule_ForLight_WhereDayIs_AndTimeIs a function that return the string “true” if all goes to plan, or
an error message when something is wrong.

The third row is much the same, except that the row starts with the keyword check which implies that the
last field of the table is the expected result of that function invocation. The second, fourth, sixth, and eighth
fields are mangled into transitionTo_At_ThenLight_ShouldBe.

//The fixture function declarations precede this code snippet	!
SLIM_CREATE_FIXTURE(LightScheduleScript)	
	 SLIM_FUNCTION(schedule_ForLight_WhereDayIs_AndTimeIs)	
	 SLIM_FUNCTION(transitionTo_At_ThenLight_ShouldBe)	
SLIM_END

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 14

http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

To successfully invoke SLIM_CREATE_FIXTURE(LightScheduleScript), these two functions are required.

"

The functions are responsible for initializing and cleaning up the LightScheduleScript data structure used
by the fixture’s functions. They must be named as <FixtureName>_Create and <FixtureName>_Destroy. In
this case the create and destroy functions don’t have much to do, but that is not always the case.
Sometimes more data is needed by the fixture, and it must be initialized and cleaned up.

typedef struct LightScheduleScript	
{	
	 char result[80];	
} LightScheduleScript;	!
//...	!
void* LightScheduleScript_Create(StatementExecutor* errorHandler, SlimList* args)	
{	
	 LightScheduleScript* self = 	
	 	 (LightScheduleScript*)calloc(1, sizeof(LightScheduleScript));	
	 return self;	
}	!
void LightScheduleScript_Destroy(void* void_self)	
{	
	 free(void_self);	
}	

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 15

http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

Let’s look now at the code behind schedule_ForLight_WhereDayIs_AndTimeIs. This function follows a
common fixture pattern: collect and validate parameters, operate on the production code, return a result
string.

"

This fixture is simulating the user interacting with the system to schedule a light control. After getting
checking the parameters the fixture calls the production code API (LightScheduler_ScheduleTurnOn or
LightScheduler_ScheduleTurnOff) based on the specified operation. If control makes it to the bottom of
this function it returns “true”.

static char* schedule_ForLight_WhereDayIs_AndTimeIs(void* void_self, SlimList* args)
{	
	 LightScheduleScript* self = (LightScheduleScript*)void_self;	
	 int id, operation, day, minute;	!
	 if (! checkArgCount(self, args, 4))	
	 	 return self->result;	!
	 id = getId(self, args, 1);	
	 if (id < 0)	
	 	 return self->result;	!
	 day = getDay(self, args, 2);	
	 if (day == NOT_A_DAY)	
	 	 return self->result;	!
	 minute = getMinute(self, args, 3);	
	 if (minute < 0)	
	 	 return self->result;	!
	 operation = getOperation(self, args, 0);	
	 if (operation == LIGHT_ON)	
	 	 LightScheduler_ScheduleTurnOn(id, day, minute);	
	 else if (operation == LIGHT_OFF)	
	 	 LightScheduler_ScheduleTurnOff(id, day, minute);	
	 else	
	 	 return self->result;	
	 	
	 return "true";	
}

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 16

http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

Here is setResult along with an example parameter getter/checker.

"

When there is a problem with the parameter, see how getDay forms an error message with
SLIM_EXCEPTION and puts it into the result buffer.

The next function (transitionTo_At_ThenLight_ShouldBe) is responsible for advancing the clock,
simulating the wakeup call to the Light Scheduler and collecting the system response. This fixture follows a
similar pattern: collect and validate parameters, operate on the production code, get any system responses,
return a result string.	

�

The checking of the returned result is done by FitNesse and not the fixture.

static void setResult(LightScheduleScript* self, const char * result)	
{	
	 strncpy(self->result, result, sizeof(self->result));	
}	!
static int getDay(LightScheduleScript* self, SlimList* args, int dayIndex)	
{	
	 int day = convertDayStringToInt(SlimList_GetStringAt(args, dayIndex));	
	 if (day == NOT_A_DAY)	
	 	 setResult(self, SLIM_EXCEPTION("Having a bad day"));	!
	 return day;	
}

static char* transitionTo_At_ThenLight_ShouldBe(void* void_self, SlimList* args)	
{	
	 LightScheduleScript* self = (LightScheduleScript*)void_self;	
	 int id;	
	 int lightState;	
	 const char* result;	!
	 if (! checkArgCount(self, args, 3))	
	 	 return self->result;	!
	 id = getId(self, args, 2);	
	 if (id < 0)	
	 	 return self->result;	!
	 if (setTimeResetLightsTransitionClock(self, args) == 0)	
	 	 return self->result;	!
	 lightState = FakeLightController_getLightState(id);	
	 result = convertIntToOnOff(lightState);	!
	 setResult(self, result);	
	 return self->result;	
}	

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 17

http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

To complete the picture, here is the helper function that advances the clock and wakes the scheduler.

"

FitNesse Test Suites
Earlier I mentioned that FitNesse supports hierarchies of tests. Running the HomeAutomationTests.
LightScheduler. TestSuite runs all the tests in the suite. There can be suites of tests and suites of suites.

"

There is virtually no cost to re-running these tests. A button press and they show green in about a half a
second.

static int setTimeResetLightsTransitionClock(
	 	 	 LightScheduleScript* self, SlimList* args) {	
	 if (FakeTimeService_SetTime(self, args, 0, 1) == 0)	
	 	 return 0;	
	 FakeLightController_resetAll();	
	 LightScheduler_WakeUp();	
	 return 1;	
}	

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 18

http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

Progress Tracking
Completed tests can provide a sense of progress. This shows there is one more test to go in this suite.

"

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 19

http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

When Something Bad Happens
With a good set of tests, a mistake with unintended bad side effects is evident. One changed line of code
caused these failures. Timely mistake awareness leads to defect prevention.

"

When Fixtures are Broken or Not Ready
Fixture errors show up in tables as yellow highlight.

"

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 20

http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

How Would You Like to Manually Test This?
Maybe you think the only real test is one done in the target? Plan to work late. I can test this application logic
in 0.049 seconds. A manual test, with clock tweaking will probably take 3 minutes per test.

"

These tests can also be run on the target

!
Summary
Teams that use use cases may be able to shift toward executable use cases (a.k.a story tests) and not incur
additional effort. The effort to create story tests could be paid for by not creating detailed use cases. If there
is additional effort, keep in mind that the effort to automate has a positive return on investment. While the
effort to test a release manually has a very short shelf-life, the executable use case serves as specification,
provides example test data and can run to show conformance.

Story tests can help to get more value from an activity your organization is probably already doing, writing
use cases, requirements, or manual test procedures. Some of that effort could be put into story tests. I
encourage you to wean your organization off many or your manual tests and replace them with story tests as
they provide a hight return on investment. Manual test is unsustainable. It means your test effort, even
though high, will have disappointing results. One of the powers of story tests is that once a few tests and
fixtures are in place, programmers will not have to write all the tests. The testers, test engineers, or subject
matter experts that write manual test procedures could write and maintain story tests. Story tests are often
easier to add to a legacy code base, as it may be easier to break dependencies around the edges of your
application.

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 21

http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

In this paper, we looked at story tests running on the host development system. Because of the fitnesse
architecture the tests can also be run on the target platform.

We’ve seen executable use cases implemented in FitNesse. These tests were run only on my host
development system, but can also run in a target platform with some additional work. Keep in mind that
these are not the only tests that a development team needs. There are lower level and high level tests. At
the low level there are unit tests. A very effective way to develop on a minute to minute basis is to use Test
Driven Development (See my book Test Driven Development for Embedded C). Unit testing might be the
single most important tests to write, but a big challenge in a legacy code base.

These tests won’t detect load and interaction problems in the system. Load tests are also needed. The act
of adding unit and story tests provides the flexibility points in the production code that allow automated load
tests to be written.

Both unit tests, story tests, and load tests are necessary, but not sufficient. Systems must also be tested as
they will be used. So integrated systems must be tested in their target operating environment. Testing in the
target is necessary, but also insufficient. When testing a fully integrated system we cannot get the code
through all its branches to make sure those really odd error situations are handled properly. Though at the
unit and the story level, we have a very good chance to exercise all the boundaries and edges of the system.
An effective test strategy needs automated unit tests, story tests, and load tests. Some amount of manual
and automated system tests will still be needed. The effort put in early and often into unit and story tests
should result in many fewer problems derailing product delivery.

!

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 22

http://www.wingman-sw.com

Testing Embedded Software with Executable Use Cases	 ESC-4020

Bibliography

[COCKBURN1] Cockburn, Alistair, Writing Effective Use Cases, Addison Wesley, 2001

[COCKBURN2] http://alistair.cockburn.us/Basic+use+case+template

[FITNESSE] www.fitnesse.org

[CSLIM] http://github.com/dougbradbury/cslim

Contact me if you would like this example.

Find my other papers, articles and ESC submissions here:

http://renaissancesoftware.net/papers.html

http://renaissancesoftware.net/blog

Wingman Software	 	 james@wingman-sw.com
Copyright © 2014 James W. Grenning	 " 	 www.wingman-sw.com 23

http://www.wingman-sw.com
http://alistair.cockburn.us/Basic+use+case+template
http://www.fitnesse.org
http://github.com/dougbradbury/cslim
http://renaissancesoftware.net/papers.html
http://renaissancesoftware.net/blog

