
IM
A

G
E

: S
H

U
T

T
E

R
S

T
O

C
K

Y
ou all write code and then toil to make
it work. You build it, and then you fix
it. Testing is an afterthought—some-
thing you do after you write the code.
You spend about half your time in the
unpredictable activity of debugging.

Debugging shows up on your schedule under the
guise of test and integration. It is a source of risk and
uncertainty. Fixing one bug might lead to another
and, sometimes, to a cascade of other bugs.

TEST-DRIVEN
DEVELOPMENT
HELPS YOU IM-

PROVE SCHEDULE
PREDICTABILITY
AND PRODUCT

QUALITY BY
ELIMINATING BUGS
BEFORE THEY MAKE

THE BUG LIST.

BY JAMES W GRENNING • RENAISSANCE SOFTWARE CONSULTING

TEST-DRIVEN
DEVELOPMENT
FOR EMBEDDED C:

26 EDN | MARCH 15, 2012 [www.edn.com]

WHY DEBUG?

You keep statistics to help predict
how much time you need to remove
the bugs. You measure and manage the
bugs. You watch for the “knee” of the
curve, the trend that shows that you
finally are fixing more bugs than you are
introducing. The knee shows that you
are almost done, but you never know
whether another killer bug is hiding in
a dark corner of the code.

One aspect of designing for manu-
facturability is determining why these
bugs happen to you. The simple answer
is this: You put them there. It’s the way
you work. When test follows develop-
ment, it will find defects (Figure 1 and
Reference 1). You make mistakes when
you develop; the tests’ job is to find the
defects. If you are any good at testing,
you’ll find bugs. Following development
by test means you must find, fix, and
manage a boatload of defects.

This procedure, debug-later pro-
gramming, is currently the most popu-
lar way to program. Write the code;
debug it later. Debug-later programming
is risky. You make mistakes because you
are human. You can be sure of neither
when the bugs will appear nor how long
it will take to find them (Figure 2).

When the time to discover a bug
(TD) increases, the time to find the bug’s
root cause (TFIND) also increases—often
dramatically. If it’s a few hours, days,
weeks, or months from introduction to
discovery, you lose context and must
start the bug hunt. When you find
defects outside the development phase,
then you must also manage the bug. For
some bugs, the time to discover a bug
does not affect the time to fix the bug
(TFIX), and some working code may also
depend on the bug. Fixing such bugs in
turn causes other bugs.

Short cycles and aggressive test
automation save time and effort. You
need not repeat tedious and error-prone
manual tests. With test automation,
the cost of retest can involve almost
no additional effort. Test automation
quickly detects side effects and avoids
the need for debugging sessions.

In another approach, TDD (test-
driven development), you develop test
and production code concurrently in a
tight feedback loop (references 2 and
3). In a TDD microcycle, you write a
test, watch it not compile, fail to make
it compile, make it pass, clean up any
mess, and repeat the process until you

are finished. Writing test code and writ-
ing production code are integrated pro-
cesses. If you make a mistake and the
new test does not pass, you immediately
know about and can fix the mistake.

The tests tell you whether you get the
new test to pass but introduce a bug. You
plug automated tests into a unit test har-
ness (Figure 3). Running a retest is free.

Some but not all occurrences of bugs
are prevented when you perform devel-
opment and test in the TDD-feedback
loop. TDD has a profound effect on
design and how you spend your time.

In contrast to debug-later pro-
gramming, the physics of TDD do
not include the risk and uncertainty
of tracking down bugs (Figure 4).
When the time to discover a mistake
approaches zero, the time to find the
mistake also approaches zero. A code
problem that you recently introduced
is often obvious. When it is not obvi-
ous, the developer can get back to a
working system by simply undoing the
last change. The time for finding and
fixing the mistake is as low as it can get,
given that things can get only worse as
time clouds the programmer’s memory
and as more code depends on the earlier
mistake.

TDD provides immediate notifi-
cation of mistakes that allow you to
prevent many of the bugs you would
otherwise have to track down. TDD

AT A GLANCE
↘ Why do these bugs happen to
you? You put them there.

↘ In TDD (test-driven develop-
ment), you develop test and pro-
duction code concurrently in a tight
feedback loop.

↘ TDD might have helped to avoid
the embarrassing Zune bug.

↘ Target-hardware bottleneck
comes in various forms, and you
can use TDD to avoid the bottle-
neck during the tight TDD-feed-
back loop.

↘ TDD helps you ensure that your
code does what you think it does.
How can you build a reliable system
if it does not?

↘ TDD quickly finds small and
large logic errors, preventing bugs
and ultimately yielding fewer bugs.

DEVELOPMENT

TEST

DEFECTS

Figure 1 When test follows development, it will find defects.

MISTAKE MADE
(BUG INJECTION)

BUG DISCOVERY

TD TFIND TFIX

BUG FOUND BUG FIXED

TIME

Figure 2 You make mistakes because you are human. You can be sure of neither when
the bugs will appear nor how long it will take to find them.

MARCH 15, 2012 | EDN 27[www.edn.com]

represents defect prevention, whereas
debug-later programming institutional-
izes the wasteful activity of debugging.

THE ZUNE BUG
TDD might have helped to avoid the
embarrassing Zune bug. Microsoft’s
Zune competes with Apple’s iPod. On
Dec 31, 2008, the Zune became “brick
for a day.” Dec 31 was New Year’s Eve
and the last day of a leap year, the first
leap year that the 30G Zune would
experience. Many people narrowed
down the Zune bug to a function in
the clock driver. Although the code in
Listing 1 is not the actual driver code,
it suffers from the same defect. Can you
find the cure for the Zune’s infinite loop
in Listing 1?

Many code-reading pundits reviewed
this code and came to the same wrong
conclusion that you might. The last day
of leap year is the 366th day of the year,
and the Zune handled that case incor-
rectly. On that day, this function never
returns! I wrote code to set the year and
the day of the year to see whether chang-
ing the boolean code to days being equal
to or greater than 366 fixes the problem,
as about 90% of the Zune bug bloggers
predicted. After getting this code into
the test harness, I wrote the test case
(Listing 2). Just as the Zune does, the
test goes into an infinite loop. I applied
the popular fix employing reviews by
thousands of programmers. Much to my
surprise, the test fails; the set-year-and-
time-of-day test determines the date
as Jan 0, 2009. New Year’s Eve parties
would still have their music, but the
Zune would still have a bug.

DEVELOPMENT

TEST

Figure 3 The tests tell you whether you get the new test to pass but in-
troduce a bug. You plug automated tests into a unit-test harness.

MISTAKE
DISCOVERY

MISTAKE
MADE

TD TFIND TFIX

ROOT CAUSE
FOUND

MISTAKE
FIXED

TIME

Figure 4 TDD has a profound effect on
design and how you spend your time.
In contrast to debug-later programming,
the physics of TDD do not include the
risk and uncertainty of tracking down
bugs.

28 EDN | MARCH 15, 2012 [www.edn.com]

That one test could have prevented
the Zune bug. How would you know
enough to write that one test? You
would know if you could write tests for
only where the bugs are. The problem is
that you don’t know where the bugs are;
they can be anywhere. So that means

you must write tests for everything—
at least everything that can break. It’s
mind-boggling to imagine all the tests
that are necessary. Don’t worry, though;
you don’t need a test for every day of
every year. You need a test only for those
days that matter.

Figure 5 The need for fast feedback leads you to move the TDD microcycle off the tar-
get to run natively on the development system. A TDD cycle contains dual-target risks
and provides the benefit of a fast TDD feedback loop.

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5

MORE FREQUENT LESS FREQUENT

WRITE
A TEST

MAKE IT PASS
REFACTOR

COMPILE
FOR

TARGET
PROCESSOR

RUN TESTS
IN THE

EVALUATION
HARDWARE

OR
SIMULATOR

RUN
TESTS IN
TARGET

HARDWARE

RUN
ACCEPTANCE

TESTS
IN TARGET

[www.edn.com]

TEST(RtcTime, 2008_12_31_last_day_of_leap_year)
{
 int yearStart = daysSince1980ForYear(2008);
 rtcTime = RtcTime_Create(yearStart+366);
 assertDate(2008, 12, 31, Wednesday);
}

LISTING 2 TEST CODE

static void SetYearAndDayOfYear(RtcTime * time)
{
 int days = time->daysSince1980;
 int year = STARTING_YEAR;
 while (days > 365)
 {
 if (IsLeapYear(year))
 {
 if (days > 366)
 {
 days -= 366;
 year += 1;
 }
 }
 else
 {
 days -= 365;
 year += 1;
 }
 }

 time->dayOfYear = days;
 time->year = year;
}

LISTING 1 ZUNE CODE

30 EDN | MARCH 15, 2012 [www.edn.com]

Computer programming is complex.
TDD systematically gets your code
working as you intend and produces
the automated test cases that keep the
code working.

EMBEDDED DESIGN
When I first explored TDD, I realized
that it could help with one of the prob-
lems—target-hardware bottleneck—
that plague many embedded-software
developers. This bottleneck comes in
various forms, and you can use TDD
to avoid the bottleneck during the
tight TDD feedback loop. Concurrent
hardware and software development
is a reality for many embedded-devel-
opment efforts. If software can be run
only on the target hardware, you will
likely suffer unnecessarily from at least
one time waster. For example, the tar-
get hardware may not be ready until
late in the delivery cycle, delaying
software testing; it may be expensive
or scarce; or it may have its own bugs.
The target hardware may also have long
development times or long uploading
times. Most embedded-development
teams experience some of these prob-
lems, which slow progress and reduce
feedback for building today’s complex
systems.

To avoid the target-hardware bottle-
neck, you can use “dual-targeting”—
designing your production code and
tests so that many of them run on a
standard PC. Dual-targeting has its
own risks, however. Testing code in the
development system builds confidence
in your code before committing it to

the target. Most of the risks of dual-
targeting are due to differences between
the development and the target envi-
ronments. These differences include
varying amounts of support for language
features, different compiler bugs, run-
time-library variations, file-name differ-
ences, and different word sizes. Because
of these risks, you may find that code
that runs failure-free in one environ-
ment experiences test failures in other
environments.

Potential differences in execution
environments should not discourage
you from dual-targeting, however. On
the contrary, you can work around these
obstacles on the path to achieving your
goals. The embedded-TDD cycle over-
comes the challenges without compro-
mising the benefits.

DEVELOPMENT CYCLE
TDD is most effective when the build-
and-test cycle takes only a handful of
seconds. This approach rules out hav-
ing target hardware in the loop for
most programmers. The need for fast
feedback leads you to move the TDD
microcycle off the target to run natively
on the development system. Figure 5
shows a TDD cycle that contains the
dual-target risks and provides the ben-
efit of a fast TDD feedback loop.

By going through the stages listed in
Table 1, you expect to find problems at
the appropriate stage. For example, you
would expect each stage to help find
these problems. Stage 1 gives you fast
feedback when you are programming,
ensuring that the code does what you

think it is doing. Stage 2 ensures that
your code compiles in both environ-
ments. Stage 3 ensures that the code
runs the same in both the host and the
target processor. The evaluation hard-
ware may need a larger memory than
the target does, so that the test and pro-
duction code can fit into the address
space. You can sometimes omit Stage
3 if you have a reliable target with the
space to run the unit tests. Stage 4 runs
the tests in the target. You could intro-
duce some hardware-dependent unit
tests in Stage 4. Stage 5 encompasses

seeing whether your system works as it
should when it is fully integrated. It’s
a good idea to automate at least some
of Stage 5.

The embedded TDD cycle doesn’t
prevent all problems, although it should
help to find most problems soon after
their introduction and in an appropriate
stage. You should be able to manually
execute stages 2 through 4 upon check-
in or at least nightly. A continuous inte-
gration server, such as Cruise Control or
Jenkins, can watch your source reposi-
tory and initiate builds after check-in.

TDD helps you ensure that your
code does what you think it does. How
can you build a reliable system if it does
not? It helps you get the code right in
the first place, and it creates a regres-
sion-test suite that helps you keep your
code working. You waste considerable
effort in finding, chasing, and fixing
bugs. Many developers are now pre-
venting these bugs from occurring with

TABLE 1 LIKELY PROBLEMS

Stage Problems

1 Logic, design, modularity, interface, and boundary conditions

2
Compiler compatibility, including language features, and library compat-
ibility, including header files and prototypes

3
Processor-execution problems, such as bugs in compiler and standard
libraries, and portability problems, such as word size, alignment, and
endian

4

Processor-execution problems, such as bugs in compiler and standard
libraries, and portability problems, such as word size, alignment, and
endian; hardware-integration problems; and misunderstood hardware
specifications

5

Processor-execution problems, such as bugs in compiler and standard
libraries, and portability problems, such as word size, alignment, and
endian; hardware-integration problems; and misunderstood hardware
and feature specifications

POTENTIAL DIFFER-
ENCES IN EXECU-
TION ENVIRONMENTS
SHOULD NOT DIS-
COURAGE YOU FROM
DUAL-TARGETING. YOU
CAN WORK AROUND
THESE OBSTACLES ON
THE PATH TO ACHIEV-
ING YOUR GOALS.
THE EMBEDDED-TDD
CYCLE OVERCOMES
THE CHALLENGES.

TDD. It fundamentally changes how
you program.

TDD quickly finds small and large
logic errors, preventing bugs and ulti-
mately yielding fewer bugs. Fewer bugs
in turn mean less debugging time and
fewer side-effect defects. When new
code violates a constraint or an assump-
tion, the tests let you know. Well-
structured tests then become a form of
executable documentation.

TDD also gives you peace of mind
because thoroughly tested code with
a comprehensive regression-test suite
gives confidence. Developers using
TDD report fewer interrupted week-
ends and better sleep patterns. TDD
also monitors progress, keeping track
of what is working and how much work
is taking place. When code changes
become difficult to test, it provides an
early warning of design problems.EDN

REFERENCES
1 Beck, Kent; and Cynthia Andres,
Extreme Programming Explained:
Embrace Change, Second Edition,
Pearson Education Inc, 2005, ISBN:
0-321-27865-8.
2 Grenning, James W, Test-Driven
Development for Embedded C, The
Pragmatic Bookshelf, 2011, ISBN:
978-1-93435-662-3, http://bit.ly/
wXvDFa.
3 Grenning, James W, “Test-Driven
Development for Embedded C, Why
Debug?” Embedded Systems Confer-
ence, September 2011, http://bit.ly/
wi7QEX.

AUTHOR’S BIOGRAPHY
James Grenning is founder of
Renaissance Software Con-
sulting, where he trains,
coaches, and consults world-
wide. With more than 30
years of software-develop-

ment experience, both technical and mana-
gerial, Grenning brings a wealth of knowl-
edge, skill, and creativity to software-devel-
opment teams and their management. His
professional roots are in embedded software,
so he is leading the way to introduce Agile
development practices to that challenging
world. He is the author of Test Driven De-
velopment for Embedded C and the
inventor of Planning Poker, an estimating
technique, and participated in the creation
of the Manifesto for Agile Software
Development.

[www.edn.com]

