V12

Object Mentor, Inc
www.objectmentor.com

Extreme Programming
and
Embedded Software Development

Class #462
James Grenning
Object Mentor, Inc

XP and Embedded Software Development — Class #462
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Source: Object Mentor Training

Project Management

2 What is the first thing
‘_ known about a project?

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 2 grenning@objectmentor.com

Source: Object Mentor Training

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 3 grenning@objectmentor.com

Problems Plaguing the Software Industry

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Source: Object Mentor Training

Simple Waterfall

Enalysis

Implementation

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 5 grenning@objectmentor.com

Source: Object Mentor Training

Waterfall as Royce Described

i) sl [e

e
Analysis |
Design o ——
—
Implementation
XP and Embedded Software Development — Class #462 James W Grenning

Copyright © March 2002-2003 All Rights Reserved 6 grenning@objectmentor.com

Source: Object Mentor Training

Waterfall as Practiced

Enalysis

Implementation

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 7 grenning@objectmentor.com

All the Problems are Savet{"for’thg™ ™
End of the Project

E—\nalysis

Implementation i
AV
Testand Fix Test and Fix
Test and Fix Test and Fix
st and Fix
Q &I}x ol

XP and Embedded Software Development — Class #462 ggﬂﬁ Il —lames renning
Copyright © March 2002-2003 All Rights Reserved 8 grenning@bjectmentor.com

=

Poor Quality

S oy
{ /\\}I*
\é\ \')
“ P,
>~

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 9 grenning@objectmentor.com

Source: Object Mentor Training

Unrealistic Expectations - Burn Out

—)
—

®

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 10 grenning@objectmentor.com

Iterative/Evolutionary Development
Cycle

\ ’ ' ' ' ' Requirements
\ \7 Design

lIIH

& Code
| — - — \
Test
XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 11 grenning@objectmentor.com

Typical development cycle
— Working Features

[Desige]

TSFraa=tt

~2 7

Working Features

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 12 grenning@objectmentor.com

Iterative/Evolutionary Development
Cycle — Working Features

Requirements

1 A A 7 7 O I

(DR R Jn T Ja JaJA A JA]

Y AVAVAVAVAVAVAVAVAVAVAVAUR

n
[<5]
S
=
354
(5]
LL
(@]
=
X
—
=
XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 13 grenning@objectmentor.com

XP is a set of inter-related values and practices

Values:
Simplicity

Feedback
Courage

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 14 grenning@objectmentor.com

Embedded Software Development

e What don’t we have

“ at the beginning
of an embedded

software project?

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 15 grenning@objectmentor.com

There’s No Hardware

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 16 grenning@objectmentor.com

Embedded Software Development

* No Hardware until late in the project
 Target platform != development platform
» Computer is hidden from the user

e Limited 10

» Concurrent execution

* Resources are limited

* Real time
XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 17 grenning@objectmentor.com

The Hardware is not Ready
How can we start the project?

» Write documents
» Have meetings
» Experiment

» Wait

Maybe there is another way

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 18 grenning@objectmentor.com

What is XP?

XP is an Agile methodology for developing
software iteratively. XP encompasses a set of
values, rights and best practices that support each
other in incrementally developing software

* Values

— Communication, Simplicity, Feedback, Courage
* Rights

— Do quality work, have a life out of work
* Practices

XP and Embedded Software Development — Class #462

James W Grenning
Copyright © March 2002-2003 All Rights Reserved 19

grenning@objectmentor.com

H Source: Ron Jeffries, et al., Extreme Programming Installed.
On-site

XP Practices

Collective
Ownership

. Coding
First Standard

Paj
Accgptance _ Planinin
Tests Prografiming SHIP g, actoring g

(Deglgn Improvements)

Continuous - Sustainable
Integration DeSIQn Pace

(40 Hour Week)
Metaphor

Small
XP and Embedded Software Development — Class #462

James W Grenning
Copyright © March 2002-2003 All Rights Reserved Releases

grenning@objectmentor.com

Source: Object Mentor Training

Managing Scope

USER
STORY

USER
STORY

USER
STORY

Get

{

Higher Business Value

1)

USER USER USER
STORY STORY STORY
H 1
Lower Business Value Don’t get
XP and Embedded Software Development — Class #462 (yet)
Copyright © March 2002-2003 All Rights Reserved 21 grenning@objectmentor.com

Stories

» Off-hook generates dial tone

* On-hook

» Extension calls extension

» Extension calls busy extension
 Flash, call transfer

 Flash, three way call

 Extension goes off-hook dials “9” and a line is
available

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 22 grenning@objectmentor.com

There’s No Hardware

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 23 grenning@objectmentor.com

Separate Core System Logic from
Hardware Specifics

S S B

/H/

@@
ey
@ (0D

O
O
N

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 24 grenning@objectmentor.com

Test Core System Logic Independent
of Hardware Specifics

Tests and @ }
Simulations
Nl i
]
H/ ~
| '_I'ests a_nd
~— Simulations
XP and Embedded Software Development — Class #462 James W Grenning

Copyright © March 2002-2003 All Rights Reserved 25 grenning@objectmentor.com

Acceptance Tests

« Slice off the hardware dependent outer layer
» Develop an application specific test language

* Run the full automated acceptance test suite
multiple times per day, on your development

platform
LINECARD 1 OFFHOOK
VERIFY LINECARD 1 DIALTONE
LINECARD 1 ONHOOK
VERIFY LINECARD 1 NODIALTONE
XP and Embedded Software Development — Class #462 James W Grenning

Copyright © March 2002-2003 All Rights Reserved 26 grenning@objectmentor.com

Initial Architectural Vision
(in UML)

CallProcessor <<interface>>
LineCard

+ onHook(LineCard) + dialToneOn()

+ offOff(LineCard) + dialToneOff()

Fake i

LineCard '

SS5Model3
LineCard

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 27 grenning@objectmentor.com

Unit Test the Initial Architecture

//CallProcessorTest.cpp
#include "TestHarness.h"
#include "CallProcessor.h"
#include "FakeLineCard.h"

TEST(CallProcessorTest, DialTone)

{
CallProcessor* cp = new CallProcessor();
FakeLineCard* Ic = new FakeLineCard();

CHECK(lc->isDialToneOn() == false);
cp->offHook(lIc);
CHECK(Ic->isDialToneOn());

delete cp;
delete Ic;

}

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 28 grenning@objectmentor.com

Separation of Concerns

//LineCard.h
class LineCard {
public:
virtual void dialToneOn() = 0;
virtual void dialToneOFf() = 0;

XP and Embedded Software Development — Class #462
Copyright © March 2002-2003 All Rights Reserved 29 grenning@objectmentor.com

Separate the interface from the implementation

Keep the interface simple and easy to use

XPand|
Copyrig

Separation of Concerns

Hide implementation details behind the interface

James W Grenning

//FakeLineCard.h
#include "LineCard.h"

class FakeLineCard : public LineCard

public:
FakeLineCard() . .
: dialTonaonCfalse) { Here is a hidden
o implementation for
void dialToneOn() { .
dialToneOn = true; running tests

¥
void dialToneOFF() {
dialToneOn = false;

boolean isDialToneOn() {
return dialToneOn;

private:
bool dialToneOn;

Separation of Concerns

Hide implementation details behind the interface

//SS5Model3LineCard.h
class SS5Model3LineCard : public LineCard
{

public:
SS5Model3LineCard O {
}

void dialToneOn() {
//twiddle the bits to turn on dialtone

by
void dialToneOff() {
//twiddle the bits to turn off dialtone

private: - -
//Whatever member variables Here IS a hldden
//are needed - .
/7ete. implementation for
3 For a specific line card
XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 31 grenning@objectmentor.com

Initial Architecture Implementation

//CallProcessor.h

#include "LineCard.h" Unknown to
Ol eiay | rocessor 4 CallProcessor,
void onHook(LineCard* Ic) { the test

Ic->dialToneOn(); implementation
oid offHook(LineCard* 1c) { is used

Ic->dialToneOff();
}

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 32 grenning@objectmentor.com

Test class name:

|CaIIProcessurTes1 |'|| H Run |

[¥] Reload classes every run

Run

Runs: Errors: Failures:

The m o 1

t;ltDialTone(CaHProcessorTest) ol | Run

[[r]
—Lx Failures L_{- Test Hierarchy|

R Ed B a r JL;r:Ig;?l;nrz\tfzgij:eesﬁ?tﬂeli;li:ﬁ :S(rC:IProjectsJ’TelephoneSW\tc hisrciCall:
means
some test
failed

D]
|Finished: 0.07 seconds Exit
XP and Embedded Software Deve - Grenning
Copyright © March 2002-2003 All Rights Reserved 33 grenning@objectmentor.com

Fix
th e ;est class name:

|CaIIProcessorTes‘t

b u g [Reload classes every run

I
Runs: Errors: Failures:
R un m o 0

The
TeSt — Pavlov’s
/) L] | Programmer
|| X Failures [Test Hierarchy |
Green Bar
means all
tests pass |
['I:
[Finisned: 004 seconds Exit
XP and Embedded Software Deve e renning

Copyright © March 2002-2003 All Rights Reserved 34 grenning@objectmentor.com

Evolutionary Design

» All Designs Evolve
» Refactoring (incremental design improvement)

» Automated testing supports design evolution
Test Driven Design
Automated Unit Tests
Automated Acceptance Tests

|
—
D
wn
—t
w
D
=
(9]
—
=
@D
wn
D
—r
@D
—
<
>
@D
—

XP and Embedded Software Development — Class #462
Copyright © March 2002-2003 All Rights Reserved 35

James W Grenning
grenning@objectmentor.com

Evolutionary Design

CallProcessor <<interface>>
Implementation LineCard
+ DialToneOn()
+ DialToneOff()
& &
] [
]]
]]
!]
SS5Model3 i
LineCard \
i
]
]
!
LineCard
Simulation

Now the SS5Model3LineCard can’t
g D€ tested w/o the CallProcessor

Copyright © March 2002-2003 All Rights Reserved 36

James W Grenning
grenning@objectmentor.com

Evolutionary Design

CallProcessor

Implementation

\V/

<<interface>>
CallProcessor

+ OnHook (LineCard)
+ OffOff(LineCard)

2\

CallProcessor
ForTestingLine
Cards

XP and Embedded Software Development — Class
Copyright © March 2002-2003 All Rights Reserved

<<interface>>
LineCard

+ DialToneOn()
+ DialTone Off()

P

SS5Model3
LineCard

N

#462

37

LineCard
Simulation

James W Grenning
grenning@objectmentor.com

Evolutionary Design
Concurrency - More separation of concerns

<<interface>>

LineCard
——— Simulated
+ dialToneOn() ! LineCard
+ dialToneOff() <]_ _______ 1
]
]
]
. SS5Model3
Z,X LineCard

ActiveLineCard

Separate concurrency model from the
behavior logic.
*ActiveLineCard applies the threading
policy to the line card’s operations

XP and Embedded Software Development — Class #462

James W Grenning
Copyright © March 2002-2003 All Rights Reserved

38 grenning@objectmentor.com

Limited Resources

 Simulation helps to get the logic right

 But, that may make you careless with resources

* Run in the target to understand all dependencies
» Measure critical resource usage

 Use data, not hunches to decide when to optimize
 Use data, not hunches to know when trouble is

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 39 grenning@objectmentor.com

Limited Resources

 Design tests that monitor critical resource usage
— Test for memory leaks
— Stack high water mark

» Use Big Visible Charts (BVC)
Memory usage

10 Bandwidth usage

Idle time

Hand draw or automatically generate
Look for troubling trends

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 40 grenning@objectmentor.com

Memory Leak Test

//Run all unit tests

long heapSize = freeSpace();

assertkEquals(heapSize == freeSpace());

iéﬁg int heapSize = freeSpace();

//The system exists

//The systems runs all acceptance tests

reportError(heapSize 1= freeSpace());

XP and Embedded Software Development — Class #462
Copyright © March 2002-2003 All Rights Reserved

James W Grenning
41 grenning@objectmentor.com

Memory Usage BVC

Flash Usage

—e— Flash Max

/)\/>< —=— Code

—a— Tables
—x— Total Used

1200
2 1000
]

<

@ 800
<

T 600
3
2400 |
@

T 200 -

T T T
1 2 3 45 6 7 8 9 101112

Iteration

XP and Embedded Software Development — Class #462
Copyright © March 2002-2003 All Rights Reserved

James W Grenning
42 grenning@objectmentor.com

Memory Usage BVC

RAM Usage
300

/g)? 250

< —e— RAM Ma

& 200 - X

X —s— Data

3 150 - —a— Heap

4 100 Stack

= ././-/""_'_'_"’: —x— Total Used

é 50 ,?‘:‘45/“‘\

0 T e e ——T—T —
1 2 3 45 6 7 8 9 101112
Iteration

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 43 grenning@objectmentor.com

Idle Time BVVC

CPU Idle Time

100

o 80 '\‘*x
IS
= 60
° ﬁ —=— Load Test
o 0 \./‘EW'L
X 20
o T T T T T T T T T T

1 2 3 4 5 6 7 8 9 10 11

Iteration

James W Grenning

XP and Embedded Software Development — Class #462
grenning@objectmentor.com

Copyright © March 2002-2003 All Rights Reserved 44

Real Time

Performance Stories
— 50,000 Lines

— 10% of lines go off-hook simultaneously, dial-tone
within 2 seconds

Acceptance tests

Unit tests with time check

Hammer and Monitor

Solve performance problems using data

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 45 grenning@objectmentor.com

Hammer and Monitor

Hammer g
in a traffic - HEAAE
load d T
Measure
5 %
Acceptance
Test

Test results
127 tests pass
4 tests failed
XP and Embedded Software Development — Class #462 James W Grenning

Copyright © March 2002-2003 All Rights Reserved 46 grenning@objectmentor.com

But | don’t have the right tools

Inability to run code on the build system

— Tests must be run on the target

There is no unit test tool like JUnit or CppUnit for
your development or execution environment

— Write a simple one

Compiler incompatibility

— Tests can be used to find compiler differences

No OO programming language (Java, C++)

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 47 grenning@objectmentor.com

No OO Programming Language

* 0O promotes decoupling
» Decoupling enables testing

e C++isC

* OO constructs in C++ can be taken advantage of for little
or no additional cost

 If you are careful

» Decoupling can be done in C, but is harder and requires
more discipline

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 48 grenning@objectmentor.com

But | have a Safety Critical System

« Safety critical is about
— Understanding the safety requirements
— Documenting the process
— Thoroughly testing the product
» Understanding the requirements
— Every project regardless of process needs this for success.
— Build teams around good people

» Thoroughly test the product
— Aligns with XP testing goals
— This is a function of good people, knowing the safety requirements

XP and Embedded Software Development — Class #462 James W Grenning

Copyright © March 2002-2003 All Rights Reserved 49 grenning@objectmentor.com

What about Documentation?

» Documentation is not evil. It is expensive and can
get out of date.

» Challenge yourself. Understand why the
documents are needed

» Are there other alternatives?

— Can the documents be automatically generated
— Can the traceability document be generated from the
acceptance test running and recording the path trough the
code?
— Write the documents when they are the best way to
meet the need
— Can you write the documents as-built rather than as-
anticipated?

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 50 grenning@objectmentor.com

Safety Critical

o XP is aincremental design and delivery strategy
— This technique is orthogonal to the application domain

* Do you need to add more?
— Safety requirements analysis
— Additional reviews
— Completeness testing
— Safety critical systems design best practices

» More work needs to be done

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 51 grenning@objectmentor.com

» XP can help

— Early progress prior to hardware
— Testing safety net
— Lower cost of change
— Use BVCs for critical resources

— Tools may be a problem

— May have to explore new ground
— Real time
— Safety critical

» XP is an Agile development technique — look to
the values for guidance

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 52 grenning@objectmentor.com

Agile Manefesto (www.agilemanifesto.org)

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 53 grenning@objectmentor.com

