
V1.2

XP and Embedded Software Development – Class #462
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Object Mentor, Inc
www.objectmentor.com

Class #462

James Grenning
Object Mentor, Inc

Extreme Programming
and

Embedded Software Development

2
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

What is the first thing
known about a project?

Project Management
Source: Object Mentor Training

3
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

!

! !

!
Source: Object Mentor Training

XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Problems Plaguing the Software Industry

5
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Simple Waterfall

1 May 1 Nov1 Jul 1 Sep

Analysis

Design

Implementation

Source: Object Mentor Training

6
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Waterfall as Royce Described

1 May 1 Nov1 Jul 1 Sep

Analysis

Design

Implementation

Source: Object Mentor Training

1 May 1 Nov1 Jul 1 Sep

Analysis

Design

Implementation

1 May 1 Nov1 Jul 1 Sep

Analysis

Design

Implementation

7
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Waterfall as Practiced

1 May 1 Nov1 Jul 1 Sep

Analysis

Design

Implementation

ST
ST
UML

Use
Use
esUse
Cases

ERD
ERD

ERD
DD

DD
DD

Source: Object Mentor Training

8
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

All the Problems are Saved for the
End of the Project

1 May 1 Nov1 Jul 1 Sep

Analysis

Design

Implementation

ST
ST
UML

Use
Use
esUse
Cases

ERD
ERD

ERD
DD

DD
DD

Source: Object Mentor Training

Test and FixTest and Fix
Test and Fix

Test and Fix

Test and Fix

Test and Fix

Test and Fix

9
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Poor Quality

10
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Unrealistic Expectations - Burn Out
Source: Object Mentor Training

11
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Iterative/Evolutionary Development
Cycle

Requirements

Design

Code

Test

12
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Typical development cycle
– Working Features

Requirements

Code

W
or

ki
ng

 F
ea

tu
re

s

Design

13
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Iterative/Evolutionary Development
Cycle – Working Features

Requirements

Design

Code

Test

W
or

ki
ng

 F
ea

tu
re

s

14
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Planning
Game

Sustainable
Pace

Open
Workspace

Pair
Programming

Simple
Design

Small
Releases

Metaphor

Continuous
Integration Test First

Design

Refactoring

Collective
Ownership

Coding
Standard

Customer
Team Member

User Stories

Acceptance
TestsXUnit

XP is a set of inter-related values and practices

Values:
Simplicity
Communication
Feedback
Courage

15
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Embedded Software Development

What don’t we have
at the beginning
of an embedded
software project?

16
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

There’s No Hardware

17
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Embedded Software Development

• No Hardware until late in the project
• Target platform != development platform
• Computer is hidden from the user
• Limited IO
• Concurrent execution
• Resources are limited
• Real time

18
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

The Hardware is not Ready
How can we start the project?

• Write documents

Maybe there is another way

Funct.
Spec
V1

Design
Spec
V2

• Have meetings

• Wait

• Experiment

19
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

What is XP?

• Values
– Communication, Simplicity, Feedback, Courage

• Rights
– Do quality work, have a life out of work

• Practices

XP is an Agile methodology for developing
software iteratively. XP encompasses a set of
values, rights and best practices that support each
other in incrementally developing software

20
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Metaphor

Collective
Ownership Coding

Standard

Sustainable
Pace
(40 Hour Week)

Continuous
Integration

Simple
Design

Pair
Programming

Test-First
Design

Refactoring
(Design Improvements)

XP Practices

Small
Releases

Acceptance
Tests

On-site
Customer

Planning
Game

SHIP

Source: Ron Jeffries, et al., Extreme Programming Installed.

21
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

USER

STORY

USER

STORY

USER

STORY

Managing Scope

USER

STORY

USER

STORY

USER

STORY

USER

STORY

USER

STORY

USER

STORY

USER

STORY

USER

STORY

USER

STORYUSER

STORY

USER

STORY

USER

STORYUSER

STORY

USER

STORY

USER

STORYUSER

STORY

USER

STORY

USER

STORYUSER

STORY

USER

STORY

USER

STORYUSER

STORY

USER

STORY

USER

STORYUSER

STORY

USER

STORY

USER

STORYUSER

STORY

USER

STORY

USER

STORY

GetHigher Business Value

Lower Business Value

Source: Object Mentor Training

Don’t get
(yet)

22
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Stories

• Off-hook generates dial tone
• On-hook
• Extension calls extension
• Extension calls busy extension
• Flash, call transfer
• Flash, three way call
• Extension goes off-hook dials “9” and a line is

available

23
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

There’s No Hardware

24
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Separate Core System Logic from
Hardware Specifics

Network

25
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Test Core System Logic Independent
of Hardware Specifics

Tests and
Simulations

Tests and
Simulations

26
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Acceptance Tests

• Slice off the hardware dependent outer layer
• Develop an application specific test language
• Run the full automated acceptance test suite

multiple times per day, on your development
platform

LINECARD 1 OFFHOOK
VERIFY LINECARD 1 DIALTONE
LINECARD 1 ONHOOK
VERIFY LINECARD 1 NODIALTONE

27
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Initial Architectural Vision
(in UML)

<<interface>>
LineCard

+ dialToneOn()
+ dialToneOff()

CallProcessor

+ onHook(LineCard)
+ offOff(LineCard)

Fake
LineCard

SS5Model3
LineCard

28
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Unit Test the Initial Architecture

//CallProcessorTest.cpp
#include "TestHarness.h"
#include "CallProcessor.h"
#include "FakeLineCard.h"

TEST(CallProcessorTest, DialTone)
{
 CallProcessor* cp = new CallProcessor();
 FakeLineCard* lc = new FakeLineCard();

 CHECK(lc->isDialToneOn() == false);
 cp->offHook(lc);
 CHECK(lc->isDialToneOn());

 delete cp;
 delete lc;
}

29
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Separation of Concerns

Separate the interface from the implementation

Keep the interface simple and easy to use

//LineCard.h
class LineCard {
 public:
 virtual void dialToneOn() = 0;
 virtual void dialToneOff() = 0;
}

30
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Separation of Concerns

//FakeLineCard.h
#include "LineCard.h"

class FakeLineCard : public LineCard
{
 public:
 FakeLineCard()
 : dialToneOn(false) {
 }

 void dialToneOn() {
 dialToneOn = true;
 }
 void dialToneOff() {
 dialToneOn = false;
 }
 boolean isDialToneOn() {
 return dialToneOn;
 }
 private:
 bool dialToneOn;

}

Hide implementation details behind the interface

Here is a hidden
implementation for

running tests

31
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Separation of Concerns

//SS5Model3LineCard.h
class SS5Model3LineCard : public LineCard
{
 public:
 SS5Model3LineCard () {
 }

 void dialToneOn() {
 //twiddle the bits to turn on dialtone
 }
 void dialToneOff() {
 //twiddle the bits to turn off dialtone
 }
 private:
 //Whatever member variables
 //are needed
 //etc.

}

Hide implementation details behind the interface

Here is a hidden
implementation for

For a specific line card

32
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Initial Architecture Implementation

//CallProcessor.h
#include "LineCard.h"

class CallProcessor {
 public:

 void onHook(LineCard* lc) {
 lc->dialToneOn();

 }
 void offHook(LineCard* lc) {
 lc->dialToneOff();
 }
}

Unknown to
CallProcessor,

the test
implementation

is used

33
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Run
The
Test

Red Bar
means

some test
failed

34
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Fix
the
bug

Run
The
Test Pavlov’s

Programmer

Green Bar
means all
tests pass

35
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Evolutionary Design

• All Designs Evolve
• Refactoring (incremental design improvement)
• Automated testing supports design evolution

– Test Driven Design
– Automated Unit Tests
– Automated Acceptance Tests
– Tests are the safety net

Unit Tests Acceptance Tests

36
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Evolutionary Design
<<interface>>

LineCard

+ DialToneOn()
+ DialToneOff()

LineCard
Simulation

CallProcessor
Implementation

SS5Model3
LineCard

Now the SS5Model3LineCard can’t
be tested w/o the CallProcessor

37
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Evolutionary Design

<<interface>>
LineCard

+ DialToneOn()
+ DialToneOff()

<<interface>>
CallProcessor

+ OnHook(LineCard)
+ OffOff(LineCard)

LineCard
Simulation

CallProcessor
Implementation

SS5Model3
LineCard

CallProcessor
ForTestingLine

Cards

38
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Evolutionary Design
Concurrency - More separation of concerns

•Separate concurrency model from the
behavior logic.
•ActiveLineCard applies the threading
policy to the line card’s operations

<<interface>>
LineCard

+ dialToneOn()
+ dialToneOff()

ActiveLineCard

Simulated
LineCard

SS5Model3
LineCard

39
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Limited Resources

• Simulation helps to get the logic right
• But, that may make you careless with resources
• Run in the target to understand all dependencies
• Measure critical resource usage
• Use data, not hunches to decide when to optimize
• Use data, not hunches to know when trouble is

coming

40
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Limited Resources

• Design tests that monitor critical resource usage
– Test for memory leaks
– Stack high water mark

• Use Big Visible Charts (BVC)
– Memory usage
– IO Bandwidth usage
– Idle time
– Hand draw or automatically generate
– Look for troubling trends

41
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Memory Leak Test

...
long heapSize = freeSpace();

//Run all unit tests

assertEquals(heapSize == freeSpace());

...
long int heapSize = freeSpace();

//The system runs all aceptance tests
//The system exists

reportError(heapSize != freeSpace());

//The systems runs all acceptance tests
//The system exists

42
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Memory Usage BVC

Flash Usage

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12

Iteration

Fl
as

h
Us

ed
 (K

 B
yt

es
)

Flash Max
Code
Tables
Total Used

43
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Memory Usage BVC

RAM Usage

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12

Iteration

R
A

M
 U

se
d

(K
 B

yt
es

)

RAM Max
Data
Heap
Stack
Total Used

44
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Idle Time BVC

CPU Idle Time

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11

Iteration

%
 Id

le
 T

im
e

Load Test

45
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Real Time

• Performance Stories
– 50,000 Lines
– 10% of lines go off-hook simultaneously, dial-tone

within 2 seconds

• Acceptance tests
• Unit tests with time check
• Hammer and Monitor
• Solve performance problems using data

46
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Hammer and Monitor

Hammer
in a traffic

load
Measure

Acceptance
Test

Test results
127 tests pass
4 tests failed

47
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

But I don’t have the right tools

• Inability to run code on the build system
– Tests must be run on the target

• There is no unit test tool like JUnit or CppUnit for
your development or execution environment
– Write a simple one

• Compiler incompatibility
– Tests can be used to find compiler differences

• No OO programming language (Java, C++)

48
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

No OO Programming Language

• OO promotes decoupling
• Decoupling enables testing

• C++ is C
• OO constructs in C++ can be taken advantage of for little

or no additional cost
• If you are careful

• Decoupling can be done in C, but is harder and requires
more discipline

49
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

But I have a Safety Critical System

• Safety critical is about
– Understanding the safety requirements
– Documenting the process
– Thoroughly testing the product

• Understanding the requirements
– Every project regardless of process needs this for success.
– Build teams around good people

• Thoroughly test the product
– Aligns with XP testing goals
– This is a function of good people, knowing the safety requirements

50
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

What about Documentation?

• Documentation is not evil. It is expensive and can
get out of date.

• Challenge yourself: Understand why the
documents are needed

• Are there other alternatives?
– Can the documents be automatically generated

– Can the traceability document be generated from the
acceptance test running and recording the path trough the
code?

– Write the documents when they are the best way to
meet the need

– Can you write the documents as-built rather than as-
anticipated?

51
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Safety Critical

• XP is a incremental design and delivery strategy
– This technique is orthogonal to the application domain

• Do you need to add more?
– Safety requirements analysis
– Additional reviews
– Completeness testing
– Safety critical systems design best practices

• More work needs to be done

52
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Conclusions

• XP can help
– Early progress prior to hardware
– Testing safety net
– Lower cost of change
– Use BVCs for critical resources

– Tools may be a problem
– May have to explore new ground

– Real time
– Safety critical

• XP is an Agile development technique – look to
the values for guidance

53
XP and Embedded Software Development – Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com

Agile Manefesto (www.agilemanifesto.org)

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation
Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

