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Project Management

2 What is the first thing
‘_ known about a project?

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 2 grenning@objectmentor.com




Source: Object Mentor Training

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 3 grenning@objectmentor.com

Problems Plaguing the Software Industry

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com




Source: Object Mentor Training

Simple Waterfall

Enalysis

Implementation
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Waterfall as Royce Described
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Waterfall as Practiced

Enalysis

Implementation
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All the Problems are Savet{"for’thg™ ™
End of the Project

E—\nalysis

Implementation i
AV
Testand Fix Test and Fix
Test and Fix Test and Fix
st and Fix
Q &I}x ol

XP and Embedded Software Development — Class #462 ggﬂﬁ Il —lames renning
Copyright © March 2002-2003 All Rights Reserved 8 grenning@bjectmentor.com

=




Poor Quality

S oy
{ /\\}I\*
\é\ \')
“ P,
>~

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 9 grenning@objectmentor.com

Source: Object Mentor Training

Unrealistic Expectations - Burn Out
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Iterative/Evolutionary Development
Cycle

\ ’ ' ' ' ' Requirements
\ \7 Design
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Typical development cycle
— Working Features
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Iterative/Evolutionary Development
Cycle — Working Features

Requirements

1 A A 7 7 O I

(DR R Jn T Ja JaJA A JA ]

Y AVAVAVAVAVAVAVAVAVAVAVAUR

n
[<5]
S
=
354
(5]
LL
(@]
=
X
—
=
XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 13 grenning@objectmentor.com

XP is a set of inter-related values and practices

Values:
Simplicity

Feedback
Courage
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Embedded Software Development

e What don’t we have

“ at the beginning
of an embedded

software project?
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There’s No Hardware
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Embedded Software Development

* No Hardware until late in the project
 Target platform != development platform
» Computer is hidden from the user

e Limited 10

» Concurrent execution

* Resources are limited

* Real time
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The Hardware is not Ready
How can we start the project?

» Write documents
» Have meetings
» Experiment

» Wait

Maybe there is another way
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What is XP?

XP is an Agile methodology for developing
software iteratively. XP encompasses a set of
values, rights and best practices that support each
other in incrementally developing software

* Values

— Communication, Simplicity, Feedback, Courage
* Rights

— Do quality work, have a life out of work
* Practices
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H Source: Ron Jeffries, et al., Extreme Programming Installed.
On-site

XP Practices
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Managing Scope
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Stories

» Off-hook generates dial tone

* On-hook

» Extension calls extension

» Extension calls busy extension
 Flash, call transfer

 Flash, three way call

 Extension goes off-hook dials “9” and a line is
available
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There’s No Hardware
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Separate Core System Logic from
Hardware Specifics
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Test Core System Logic Independent
of Hardware Specifics

Tests and @ }
Simulations
Nl i
]
H/ ~
| '_I'ests a_nd
~— Simulations
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Acceptance Tests

« Slice off the hardware dependent outer layer
» Develop an application specific test language

* Run the full automated acceptance test suite
multiple times per day, on your development

platform
LINECARD 1 OFFHOOK
VERIFY LINECARD 1 DIALTONE
LINECARD 1 ONHOOK
VERIFY LINECARD 1 NODIALTONE
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Initial Architectural Vision
(in UML)

CallProcessor <<interface>>
LineCard

+ onHook(LineCard) + dialToneOn()

+ offOff(LineCard) + dialToneOff()

Fake i

LineCard '

SS5Model3
LineCard
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Unit Test the Initial Architecture

//CallProcessorTest.cpp
#include "TestHarness.h"
#include "CallProcessor.h"
#include "FakeLineCard.h"

TEST(CallProcessorTest, DialTone)

{
CallProcessor* cp = new CallProcessor();
FakeLineCard* Ic = new FakeLineCard();

CHECK(lc->isDialToneOn() == false);
cp->offHook(lIc);
CHECK(Ic->isDialToneOn());

delete cp;
delete Ic;

}
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Separation of Concerns

//LineCard.h
class LineCard {
public:
virtual void dialToneOn() = 0;
virtual void dialToneOFf() = 0;
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Separate the interface from the implementation

Keep the interface simple and easy to use

XPand|
Copyrig

Separation of Concerns

Hide implementation details behind the interface

James W Grenning

//FakeLineCard.h
#include "LineCard.h"

class FakeLineCard : public LineCard

public:
FakeLineCard() . .
: dialTonaonCfalse) { Here is a hidden
o implementation for
void dialToneOn() { .
dialToneOn = true; running tests

¥
void dialToneOFF() {
dialToneOn = false;

boolean isDialToneOn() {
return dialToneOn;

private:
bool dialToneOn;




Separation of Concerns

Hide implementation details behind the interface

//SS5Model3LineCard.h
class SS5Model3LineCard : public LineCard
{

public:
SS5Model3LineCard O {
}

void dialToneOn() {
//twiddle the bits to turn on dialtone

by
void dialToneOff() {
//twiddle the bits to turn off dialtone

private: - -
//Whatever member variables Here IS a hldden
//are needed - .
/7ete. implementation for
3 For a specific line card
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Initial Architecture Implementation

//CallProcessor.h

#include "LineCard.h" Unknown to
Ol eiay | rocessor 4 CallProcessor,
void onHook(LineCard* Ic) { the test

Ic->dialToneOn(); implementation
oid offHook(LineCard* 1c) { is used

Ic->dialToneOff();
}
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Test class name:

|CaIIProcessurTes1 |'|| H Run |

[¥] Reload classes every run

Run

Runs: Errors: Failures:

The m o 1

t;ltDialTone(CaHProcessorTest) ol | Run

[ [r]
—Lx Failures L_{- Test Hierarchy|

R Ed B a r JL;r:Ig;?l;nrz\tfzgij:eesﬁ?tﬂeli;li:ﬁ :S(rC:IProjectsJ’TelephoneSW\tc hisrciCall:
means
some test
failed

D]
|Finished: 0.07 seconds Exit
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Fix
th e ;est class name:

|CaIIProcessorTes‘t

b u g [ Reload classes every run

I
Runs:  Errors: Failures:
R un m o 0

The
TeSt — Pavlov’s
/ ) L] | Programmer
|| X Failures [ Test Hierarchy |
Green Bar
means all
tests pass |
[ 'I:
[Finisned: 004 seconds Exit
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Evolutionary Design

» All Designs Evolve
» Refactoring (incremental design improvement)

» Automated testing supports design evolution
Test Driven Design
Automated Unit Tests
Automated Acceptance Tests
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Evolutionary Design

CallProcessor <<interface>>
Implementation LineCard
+ DialToneOn()
+ DialToneOff()
& &
] [
] ]
] ]
! ]
SS5Model3 i
LineCard \
i
]
]
!
LineCard
Simulation

Now the SS5Model3LineCard can’t
g D€ tested w/o the CallProcessor
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Evolutionary Design

CallProcessor

Implementation

\V/

<<interface>>
CallProcessor

+ OnHook (LineCard)
+ OffOff(LineCard)

2\

CallProcessor
ForTestingLine
Cards
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<<interface>>
LineCard

+ DialToneOn()
+ DialTone Off()

P

SS5Model3
LineCard

N

#462
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LineCard
Simulation
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Evolutionary Design
Concurrency - More separation of concerns

<<interface>>

LineCard
——— Simulated
+ dialToneOn() ! LineCard
+ dialToneOff() <]_ _______ 1
]
]
]
. SS5Model3
Z,X LineCard

ActiveLineCard

Separate concurrency model from the
behavior logic.
*ActiveLineCard applies the threading
policy to the line card’s operations
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Limited Resources

 Simulation helps to get the logic right

 But, that may make you careless with resources

* Run in the target to understand all dependencies
» Measure critical resource usage

 Use data, not hunches to decide when to optimize
 Use data, not hunches to know when trouble is
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Limited Resources

 Design tests that monitor critical resource usage
— Test for memory leaks
— Stack high water mark

» Use Big Visible Charts (BVC)
Memory usage

10 Bandwidth usage

Idle time

Hand draw or automatically generate
Look for troubling trends

XP and Embedded Software Development — Class #462 James W Grenning
Copyright © March 2002-2003 All Rights Reserved 40 grenning@objectmentor.com




Memory Leak Test

//Run all unit tests

long heapSize = freeSpace();

assertkEquals(heapSize == freeSpace());

iéﬁg int heapSize = freeSpace();

//The system exists

//The systems runs all acceptance tests

reportError(heapSize 1= freeSpace());
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Memory Usage BVC

Flash Usage
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Memory Usage BVC

RAM Usage
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Idle Time BVVC

CPU Idle Time
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Real Time

Performance Stories
— 50,000 Lines

— 10% of lines go off-hook simultaneously, dial-tone
within 2 seconds

Acceptance tests

Unit tests with time check

Hammer and Monitor

Solve performance problems using data
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Hammer and Monitor

Hammer g
in a traffic - HEAAE
load d T
Measure
5 %
Acceptance
Test

Test results
127 tests pass
4 tests failed
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But | don’t have the right tools

Inability to run code on the build system

— Tests must be run on the target

There is no unit test tool like JUnit or CppUnit for
your development or execution environment

— Write a simple one

Compiler incompatibility

— Tests can be used to find compiler differences

No OO programming language (Java, C++)
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No OO Programming Language

* 0O promotes decoupling
» Decoupling enables testing

e C++isC

* OO constructs in C++ can be taken advantage of for little
or no additional cost

 If you are careful

» Decoupling can be done in C, but is harder and requires
more discipline
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But | have a Safety Critical System

« Safety critical is about
— Understanding the safety requirements
— Documenting the process
— Thoroughly testing the product
» Understanding the requirements
— Every project regardless of process needs this for success.
— Build teams around good people

» Thoroughly test the product
— Aligns with XP testing goals
— This is a function of good people, knowing the safety requirements
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What about Documentation?

» Documentation is not evil. It is expensive and can
get out of date.

» Challenge yourself. Understand why the
documents are needed

» Are there other alternatives?

— Can the documents be automatically generated
— Can the traceability document be generated from the
acceptance test running and recording the path trough the
code?
— Write the documents when they are the best way to
meet the need
— Can you write the documents as-built rather than as-
anticipated?
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Safety Critical

o XP is aincremental design and delivery strategy
— This technique is orthogonal to the application domain

* Do you need to add more?
— Safety requirements analysis
— Additional reviews
— Completeness testing
— Safety critical systems design best practices

» More work needs to be done
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» XP can help

— Early progress prior to hardware
— Testing safety net
— Lower cost of change
— Use BVCs for critical resources

— Tools may be a problem

— May have to explore new ground
— Real time
— Safety critical

» XP is an Agile development technique — look to
the values for guidance
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Agile Manefesto (www.agilemanifesto.org)

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.
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