
www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

SOLID C
James Grenning

Presented at ACCU 2014
Bristol, UK

1

Talk to me on Twitter
@jwgrenning

!
Connect with me on linkedin.com

http://www.linkedin.com/in/jwgrenning
Remind me how we met.

!
http://www.wingman-sw.com
http://blog.wingman-sw.com

http:// www.jamesgrenning.com
unpappd.com jwgrenning

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

2

When is Software

Design Finished?

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

3

A Complex system that
works is invariably
found to have evolved
from a simple system
that worked.

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

4

Red

Green

Refactor

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Rules of Simple Design
In Priority Order!

1. Passes all tests
2. No duplication

3. Expresses intent

4. Fewest classes and methods (no extra stuff)

5

Kent Beck [XP, TDD]

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

6

Why is Software Valuable?

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

!

• Functionality

!

!

!

• Malleability

7

The Two Values of Software

Red

Green

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

8

Red

Green

Refactor

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

9

www.renaissancesoftware.net
james@renaissancesoftware.net

Copyright ©2008-2013 James W. Grenning	

All Rights Reserved. For use by training attendees. The End

10

Become an expert in
your craft so you can

advise your boss

My Boss won’t let me

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Design for Maintenance

• Systems evolve, the design is NEVER done.

• Automated tests make evolution safer.

!

• Key technical practices for evolving design

– Test Driven development

– Refactoring

– Modularity, Loose Coupling, High Cohesion 
 (OO Design)

11

Donald Knuth Says

12
ACCU 2014

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees.

Let us change our
traditional attitude to the
construction of programs.
Instead of imagining that

our main task is to
instruct a computer what to
do, let us concentrate rather

on explaining to human
beings what we want a

computer to do.

Martin Fowler Says

13
ACCU 2014

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees.

Any fool can write code
that the compiler

understands, but it takes
real skill to write code

other programmers can
understand.

From “Refactoring - Improving the Design of Existing Code

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Three Critical Skills

14

Recognize what is wrong and fix it!

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

!

!

SOLID

15

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Spaghetti Slide

16

• Once a design problem is identified, you must
envision a better solution

• Look to apply the design principles
– SOLID
– DRY - Don’t Repeat Yourself

– from The Pragmatic Programmer
– Principle of Least Knowledge.
– Separation of Concerns (SoC).

Refactoring
www.renaissancesoftware.net

james@renaissancesoftware.net
Copyright © 2008-2013 James W. Grenning	

All Rights Reserved. For use by training attendees.

Envisioning

17

Refactoring
www.renaissancesoftware.net

james@renaissancesoftware.net
Copyright © 2008-2013 James W. Grenning	

All Rights Reserved. For use by training attendees.

18

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

SOLID Design Principles

19

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

SOLID Design Principles

Single Responsibility Principle

Open/Closed Principle

Liskov Substitution Principle

Interface Segregation Principle

Dependency Inversion Principle

20

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Home Automation System
Light Scheduling Requirements

• The light scheduler maintains a schedule for lights that can
be turned on or off. Multiple schedules per light are supported
for each light.

• A light can be scheduled to turn on.

• A light can be scheduled to turn off.

• 32 lights can be addressed by their integer ID.

• It must support 128 separate scheduled events

• Schedules can be established by

– specific day of the week (M Tu W Th F Sa Su), or everyday.

• Lights can also be controlled though a UI on a front panel,
iPad, iPhone, Android device, or web enabled device.

21

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

22

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Spaghetti Slide

23

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Single Responsibility Principle
Bob Martin [AGILE]

• a.k.a. Cohesion

!

• A module should do one thing and do it well.

• A module should have a single reason to change.

!

• Test: a module can be described in 25 words or less.

24

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

25

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

A Module with Collaborators

• Every minute, the
RTOS wakes up
the Light
Scheduler.

• If it is time for one
of the lights to be
controlled, the
LightController is
told to turn on/off
the light.

26

Time Service

+ GetTime()
+ SetPeriodicAlarm()

Light
Scheduler

+ScheduleTurnOn()
+RemoveSchedule()
+WakeUp()

Light Controller

+ On(id)
+ Off(id)

Hardware RTOS

<<anonymous callback>>

Admin
Console

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

27

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Open/Closed Principle

• A module is open for extension, and closed for
modification.

• A design adheres to the open closed principle when it
accommodates a certain kinds of changes without
having to change existing code.

• Changes just drop in.

!

• Say “X is open for extension for new kinds of Ys, but
closed for modification”

28

Thanks: Bertrand Meyers

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

OCP Applied

LightScheduler is

open for extension for

new kinds of
LightControllers and
TimeServices.

!

It is closed for

modification for those
extensions.

29

<<interface>>

Time Service
+ GetTime()
+ SetPeriodicAlarm()

Light
Scheduler

+ ScheduleTurnOn()
+ RemoveSchedule()
+WakeUp()

<<interface>>

Light Controller
+ On(id)
+ Off(id)

X10 Light
Controller

Acme
Time Service

Admin
Console

Model 42
Light Controller

Linux
Time Service

<<implements>> <<implements>>

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

30

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Liskov Substitution Principle

• Modules with the same interface can be substituted
without the client knowing the difference.

– Modules must meet the contract of the client and
interface.

– Preconditions cannot be strengthened in a server.

– Postconditions cannot be weakened in a server.

31

Thanks: Barbara Liskov

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

32

© James Barrante. This file is licensed under the Creative Commons Attribution 3.0 Unported license.

OS Abstraction

typedef struct ThreadStruct * Thread;	
typedef void * (*ThreadEntryFunction)(void *);	
!
Thread Thread_Create(ThreadEntryFunction f, void * parameter);	
void Thread_Start(Thread);	
void Thread_Destroy(Thread);	
void Thread_Exit(void *);	
void Thread_Join(Thread, void **result);	
void * Thread_Result(Thread);	

33
ACCU 2014

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees.

OS Abstraction is Not Working

//Snip from some product code	
!

Thread thread = Thread_Create(threadEntry, 0);	
!
#if POSIX_OS	
 //POSIX starts thread on create	
#else	
 //AcmeOS does not start thread on create	
 Thread_Start(thread);	
#endif

34
ACCU 2014

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees.

OCP/LSP Designs Don’t Burden the Client

//Snip from some product code	
!
Thread thread = Thread_Create(threadEntry, 0);	
Thread_Start(thread);	

35
ACCU 2014

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees.

POSIX Version Delays Thread Creation
typedef struct ThreadStruct	
{	
 ThreadEntryFunction entry;	
 void * parameter;	
 pthread_t pthread;	
 BOOL started;	
!
} ThreadStruct;	
!
Thread Thread_Create(ThreadEntryFunction f, void * parameter)	
{	
 Thread self = calloc(1, sizeof(ThreadStruct));	
 self->entry = f;	
 self->parameter = parameter;	
 self->started = FALSE;;	
 return self;	
}	
!
void Thread_Start(Thread self)	
{	
 self->started = TRUE;	
 pthread_create(&self->pthread, NULL, self->entry, self->parameter);	
}	

36
ACCU 2014

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees.

Acme Does Not Need To Delay Create

typedef struct ThreadStruct	
{	
 AcmeThreadStruct acmeThread;	
} ThreadStruct;	
!
Thread Thread_Create(ThreadEntryFunction entry, void * parameter)	
{	
 Thread self = calloc(1, sizeof(ThreadStruct));	
 AcmeThread_create(&self->acmeThread, entry, parameter, 5, 1000);	
 return self;	
}	
!
void Thread_Start(Thread self)	
{	
 AcmeThread_start(&self->acmeThread);	
}	

37
ACCU 2014

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees.

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Interface Segregation Principle

• Don’t depend on fat interfaces.

• Don’t depend on interfaces that have methods you
don’t care about.

• Tailor interfaces to client need.

• Split fat interfaces.

38

Thanks: Robert Martin

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Light Scheduler Design

• The TimeService
limits the
knowledge of the
RTOS

!

• Adapters are a form
of Interface
Segregations

39

<<interface>>

Time Service
+ GetTime()
+ SetPeriodicAlarm()

Light
Scheduler

+ AddTurnOn()
+ RemoveSchedule()
+WakeUp()

<<interface>>

Light Controller
+ On(id)
+ Off(id)

Model 42 Hardware RTOS

<<anonymous callback>>

Model 42
Light Controller

RTOS
Time Service

<<implements>> <<implements>>

Admin
Console

Third
Party
Code

Your
Code

Your
Code Your

Code

Third
Party
Code

Your
Code

Your
Code Your

Code

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Manage Third Party Dependenices

40

Your Tailored
Service

Interface

Your
Code

Your
Code Your

Code

Third
Party
Code

Your adaptor

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Dependency Inversion Principle

• Invert dependencies from high level modules to low
level details.

• Break problem dependencies by inserting an
abstraction.

– High level detail depends on an interface

– Low level code depends on the interface

– Interface depends on neither

– Dependency cycle

• a.k.a. Depend on Abstractions

41

Thanks: Robert Martin

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Un-Managed Dependencies

• Transitive
dependencies make
the highest level of
this design depend
on the lowest level
details.

!

• Use DIP to break the
transitive
dependency chain.

42

Time Service

+ GetTime()
+ SetPeriodicAlarm()

Light
Scheduler

+ScheduleTurnOn()
+RemoveSchedule()
+WakeUp()

Light Controller

+ On(id)
+ Off(id)

Hardware RTOS

<<anonymous callback>>

Admin
Console

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Invert Dependencies with Interfaces

43

<<interface>>
Time Service

+ GetTime()
+ SetPeriodicAlarm()

Light
Scheduler

+ ScheduleTurnOn()
+ RemoveSchedule()
+WakeUp()

<<interface>>
Light Controller

+ On(id)
+ Off(id)

Model 42 Hardware RTOS

<<anonymous callback>>

Model 42
Light Controller

RTOS
Time Service

<<implements>> <<implements>>

Admin
Console

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Unmanaged Dependencies Lead
to Manual Testing

44

The Net

Core Software

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Substitutability Supports Testing

45

<<interface>>
Time Service

+ GetTime()
+ SetPeriodicAlarm()

Light
Scheduler

Test

Light
Scheduler

+ ScheduleTurnOn()
+ RemoveSchedule()
+wakeUp()

<<interface>>
Light Controller

+ On(id)
+ Off(id)

Light Controller
Spy

Fake
Time Service

<<implements>> <<implements>>

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

 Interfaces in C

• Containing just what is needed to interact with the
module

– Function declarations

– Constants needed for interacting with the module

– struct forward declaration

!

• Things not in the interface header file

– Data structure member definitions

– Data definitions

– Constants needed in the implementation

46

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Rules of Simple Design
In Priority Order!

1. Passes all tests
2. No duplication

3. Expresses intent

4. Fewest classes and methods (no extra stuff)*

47

Kent Beck [XP, TDD]

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

*Fewest Classes and Methods that
Move You Closer to A Workable

Architecture

48

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Architectural Vision

• Have an idea where you are going.

• Build slices of functionality that lets you try the
architecture.

• Don’t build architecture first, get features working
and refactor to a great architecture.

• Keep architectural view high level.

49

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Architectural Vision
The Big Picture

• Have a big picture in the developers’ minds.

• The vision shows

– the major boundaries

– the areas of concern

– the interfaces

• Likely fractal in nature

50

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

SOLID and Testable C

51

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Different Design Models in C

52

Model Purpose

Single-instance !
Abstract Data Type

Encapsulates a module’s internal state when only
a single instance of the module is needed

Multiple-instance !
Abstract Data Type

Encapsulates a module’s internal state and allows
multiple instances of the module’s data

Dynamic interface Allows a module’s interface functions to be
assigned at runtime

Per-type dynamic
Interface

Allows multiple types of modules with the same
interface to have unique interface functions

Barbara Liskov,
Programming with abstract data types. Proceedings of the
ACM SIGPLAN Symposium on Very High Level Languages, 1974.

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Single Instance Abstract Data Type

!

53

#ifndef D_LightScheduler_H	
#define D_LightScheduler_H	
!
#include "TimeService.h"	
!
enum Day {	
 NONE=-1, EVERYDAY=10, WEEKDAY, WEEKEND,	
 SUNDAY=1, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY	
};	
!
typedef enum Day Day;	
!
void LightScheduler_Create();	
void LightScheduler_Destroy();	
void LightScheduler_ScheduleTurnOn(int id, Day day, int minute);	
void LightScheduler_ScheduleTurnOff(int id, Day day, int minute);	
void LightScheduler_ScheduleRemove(int id, Day day, int minute);	
void LightScheduler_Wakeup(Time*);	
!
#endif // D_LightScheduler_H

Data hidden in C
file using file

scope

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Multiple Instance Abstract Data Type
Clients Only Interact Through the Interface

54

#ifndef D_CircularBuffer_H	
#define D_CircularBuffer_H	
!
typedef struct CircularBuffer CircularBuffer;	
!
CircularBuffer * CircularBuffer_Create(int capacity);	
void CircularBuffer_Destroy(CircularBuffer);	
int CircularBuffer_IsEmpty(CircularBuffer);	
int CircularBuffer_IsFull(CircularBuffer);	
int CircularBuffer_Put(CircularBuffer, int);	
int CircularBuffer_Get(CircularBuffer);	
int CircularBuffer_Capacity(CircularBuffer);	
#endif // D_CircularBuffer_H	

instance
passed in

Public name,
hidden internals

instance
returned

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Multiple Instance ADT - .c File
Structure Fields are Private

55

#include "CircularBuffer.h"	
#include "Utils.h"	
#include <stdlib.h>	
#include <string.h>	
!
typedef struct CircularBuffer	
{	
 int count;	
 int index;	
 int outdex;	
 int capacity;	
 int * values;	
} CircularBuffer;	
!

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Multiple Instance ADT - .c File
Well Defined Initialization and

Cleanup

56

CircularBuffer * CircularBuffer_Create(int capacity)	
{	
 CircularBuffer * self = calloc(capacity,	
 sizeof(CircularBuffer));	
 self->capacity = capacity;	
 self->values = calloc(capacity + 1, sizeof(int));	
 self->values[capacity] = BUFFER_GUARD;	
 return self;	
}	
!
void CircularBuffer_Destroy(CircularBuffer * self)	
{	
 free(self->values);	
 free(self);	
}	

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Simple Dynamic Implementation

57

#ifndef D_RandomMinuteGenerator_H	
#define D_RandomMinuteGenerator_H	
!
void RandomMinuteGenerator_Create(int bound);	
extern int (*RandomMinuteGenerator_Get)();	
!
#endif // D_RandomMinuteGenerator_H	

function pointer
interface

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Inverting a Dependency with a
Function Pointer

58

LightScheduler

Random Minute Get

int (*RandomMinute_Get)()

<<implements>>

Random Minute Get

LightScheduler

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

#if Abuse

59

void LightController_TurnOn(int id)	
{	
 LightDriver driver = lightDrivers[id];	
 if (NULL == driver) return;	
!
 #if X10_LIGHTS	
 X10LightDriver_TurnOn(driver);	
 #elif ACME_LIGHTS	
 AcmeWirelessLightDriver_TurnOn(driver);	
 #elif MEMORY_MAPPED_LIGHTS	
 MemMappedLightDriver_TurnOn(driver);	
 #elif TESTING	
 LightDriverSpy_TurnOn(driver);	
 #endif	
}

Similar #if
statements litter
the code. This

does not look too
DRY

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

switch case Abuse

60

void LightController_TurnOn(int id)	
{	
 LightDriver driver = lightDrivers[id];	
 if (NULL == driver) return;	
!
 switch (driver->type)	
 {	
 case X10:	
 X10LightDriver_TurnOn(driver);	
 break;	
 case AcmeWireless:	
 AcmeWirelessLightDriver_TurnOn(driver);	
 break;	
 case MemoryMapped:	
 MemMappedLightDriver_TurnOn(driver);	
 break;	
 case TestLightDriver:	
 LightDriverSpy_TurnOn(driver);	
 break;	
 default:	
 /* now what? */	
 break;	
 }	
}

Similar switch
cases litter the

code when
switching on type

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

LightController depends on Each
Specific LightDriver

61

LightScheduler

LightController

+ TurnOn()
+ TurnOff()

<<interface>>
LightController

X10
LightDriver

Acme Wireless
LightDriver

Memory Mapped
LightDriver

<<implements>>

LightDriver Spy

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

LightController Depends on the
LightDriver Interface

62

LightScheduler

LightController

+ TurnOn()
+ TurnOff()

<<interface>>
LightController

+ TurnOn()
+ TurnOff()

<<interface>>
LightDriver

X10
LightDriver

Acme Wireless
LightDriver

Memory Mapped
LightDriver

<<implements>>

LightDriver Spy

<<implements>>

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

How Much Flexibility is Needed?

• Support for one LightDriver at compile time?

– use the linker

• Support for one LightDriver type determined at
runtime?

– Use a function pointer interface

• Support for multiple LightDriver types determined at
runtime?

– Use per-type dynamic interface

63

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

LightDriver.h

64

typedef struct LightDriverStruct * LightDriver;	
!
void LightDriver_Destroy(LightDriver);	
void LightDriver_TurnOn(LightDriver);	
void LightDriver_TurnOff(LightDriver);	
const char * LightDriver_GetType(LightDriver driver);	
int LightDriver_GetId(LightDriver driver);	
!
!
#include "LightDriverPrivate.h"

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

LightDriverPrivate.h

65

typedef struct LightDriverInterfaceStruct *
LightDriverInterface;	
!
typedef struct LightDriverStruct	
{	
 LightDriverInterface vtable;	
 const char * type;	
 int id;	
} LightDriverStruct;	
!
typedef struct LightDriverInterfaceStruct	
{	
 void (*TurnOn)(LightDriver);	
 void (*TurnOff)(LightDriver);	
 void (*Destroy)(LightDriver);	
} LightDriverInterfaceStruct;

function pointer
table

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

X10LightDriver.h

66

#include "LightDriver.h"	
!
typedef struct X10LightDriverStruct * X10LightDriver;	
!
typedef enum X10_HouseCode {	
 X10_A,X10_B,X10_C,X10_D,X10_E,X10_F,	
 X10_G,X10_H,X10_I,X10_J,X10_K,X10_L,	
 X10_M,X10_N,X10_O,X10_P } X10_HouseCode;	
!
LightDriver X10LightDriver_Create(int id, 	
 X10_HouseCode code, 	
 int unit);	

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Extending LightDriver struct
(X10LightDriver.c)

67

//snip... 	
!
typedef struct X10LightDriverStruct	
{	
 LightDriverStruct base;	
 X10_HouseCode house;	
 int unit;	
} X10LightDriverStruct;	
!
//snip... 	

All
LightDriver
instances must

start with the base
struct

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Initializing the vtable
(X10LightDriver.c)

68

static void turnOn(LightDriver super)	
{	
 X10LightDriver self = (X10LightDriver)super;	
 formatTurnOnMessage(self);	
 sendMessage(self);	
}	
static void turnOff(LightDriver super)	
{	
 X10LightDriver self = (X10LightDriver)super;	
 formatTurnOffMessage(self);	
 sendMessage(self);	
}	
static LightDriverInterfaceStruct interface =	
{	
 turnOn,	
 turnOff,	
 destroy	
};

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Initializing a Driver
(X10LightDriver.c)

69

static LightDriverInterfaceStruct interface =	
{	
 turnOn,	
 turnOff,	
 destroy	
};	
!
LightDriver X10LightDriver_Create(int id, X10_HouseCode house,	
 int unit)	
{	
 X10LightDriver self = 	
 calloc(1, sizeof(X10LightDriverStruct));	
 self->base.vtable = &interface;	
 self->base.type = "X10";	
 /* snip */	
 return (LightDriver)self;	
}	
!

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Simple Version of
LightDriver_TurnOn()

70

void LightDriver_TurnOn(LightDriver self)	
{	
 if (self)	
 self->vtable->TurnOn(self);	
}	

The call is a bit hard to look
at, so it’s hidden in delegating

function behind an API.

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

C99 struct Initialization

71

static LightDriverInterfaceStruct interface =	
{	
 .Destroy = destroy,	
 .TurnOn = turnOn,	
 .TurnOff = turnOff,	
};

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Really Safe Version of
LightDriver_TurnOn()

72

void LightDriver_TurnOn(LightDriver self)	
{	
 if (self && self->vtable && self->vtable->TurnOn)	
 self->vtable->TurnOn(self);	
}	

Combining safe function
dispatch with C99 struct

initialization means that not all
drivers have to support all

interface functions.

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

LightController uses the
LightDriver

!

!

!

!

!

• The switch case statement is gone! As well as all its
duplicates.

• Code reads top to bottom

• Special cases are isolated

73

void LightController_TurnOn(int id)	
{	
 if (isIdInBounds(id))	
 LightDriver_TurnOn(lightDrivers[id]);	
}	

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Creating a Specific LightDriver
Using it Generically

74

LightDriver lightDriver;	
!
lightDriver = X10LightDriver_Create(3, X10_A, 12);	
!
LightDriver_TurnOn(lightDriver);	
LightDriver_TurnOff(lightDriver);	
LightDriver_Destroy(lightDriver);	

Create parameters are
customized for the specific driver
type. It returns the abstract type

Clients of the driver have no
dependency on the concrete type

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Dynamic Interfaces are Very
Convenient for Inserting Test

Doubles
!

!

!

75

// From LightDriverSpy.c	
!
static LightDriverInterfaceStruct interface =	
{	
 .Destroy = LightDriverSpy_Destroy	
 .TurnOn = LightDriverSpy_TurnOn,	
 .TurnOff = LightDriverSpy_TurnOff,	
};

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Production Code is
Unaware of the Indirection

!

!

!

!

!

• LightDriver_TurnOn() indirectly calls the spy

76

TEST(LightDriverSpy, On) 	
{	
	 LightDriver lightDriverSpy = LightDriverSpy_Create(1);	
	 LightDriver_TurnOn(lightDriverSpy); 	
	 LONGS_EQUAL(LIGHT_ON, 	LightDriverSpy_GetState(1));	
}	

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Function Pointer APIs

• One module operates on another module through a
function pointer table.

• Allows a whole set of functions to be swapped with a
single pointer change.

• Good for large systems with component variations

• Also good for updating or patching single
components

!

• Choose the simplest approach. Keep code readable.

77

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

Testability

• The function pointer based APIs allow test doubles to
be inserted at runtime.

• Legacy code that has function pointer APIs can be
easier to get into a test harness.

– Fill the function pointers with NULLs

– Run until crash to see which functions are accessed

– Add stubs as runtime dependencies are discovered

!

• All these design models employ programming to
interfaces and encapsulation

78

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

C++

• The use of function pointers and function pointer
tables does lead some to look at C++.

• C++ has this capability built in.

• Maybe you should look at C++.

!

!

• Why are you still using C?
– http://renaissancesoftware.net/papers/14-papers/51-stillusingc.html

79

www.wingman-sw.com
james@wingman-sw.com

Copyright © 2008-2014 James W. Grenning	

All Rights Reserved. For use by training attendees. ACCU 2014

80

Talk to me on Twitter
@jwgrenning

!
Connect with me on linkedin.com

http://www.linkedin.com/in/jwgrenning
Remind me how we met.

!
http://www.wingman-sw.com
http://blog.wingman-sw.com

http:// www.jamesgrenning.com
unpappd.com jwgrenning

Ask me for the
pragprog.com
discount code

