
Test-Driven Development For  
Embedded C++ Programmers

#421
By James Grenning and Robert Martin

Object Mentor, Inc.

Copyright © 2000-2003 by Object Mentor, Inc
All Rights Reserved

V1.0

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 2

What is Test Driven Development?

• An iterative technique to develop software
• As much (or more) about design as testing

– Encourages design from user’s point of view
– Encourages testing classes in isolation
– Produces loosely-coupled, highly-cohesive systems

• As much (or more) about documentation as testing
• Must be learned and practiced

– If it feels natural at first, you’re probably doing it wrong

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 3

Typical Development Cycle

Requirements

Design

Code

Test and Fix Test and Fix
Test and Fix

Test and FixTest and Fix
Test and Fix

Test

Test and Fix

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 4

Iterative/Evolutionary Development Cycle

Requirements

Design

Code

Test

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 5

Typical development cycle  
– Working Features

Requirements

Code

W
or

ki
ng

 F
ea

tu
re

s

Design

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 6

Iterative/Evolutionary Development Cycle
– Working Features

Requirements

Design

Code

Test

W
or

ki
ng

 F
ea

tu
re

s

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 7

Automated Tests Provide a Safety Net

• Once a test passes, it is re-run with every change
• Broken tests are not tolerated
• Side affect defects are detected immediately
• Assumptions are 

continually checked

Unit Tests Acceptance Tests

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 8

The Test Driven Development Cycle

Write a test for !
new capability

Start

Compile

Fix compile !
errors

Run the test!
And see it fail

Write the code

Run the test!
And see it pass

Refactor as needed

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 9

Lots of Small Steps

• Shortest distance between two points

 B’
!

A
 B

• Use test-driven to get from A to B in very small,
verifiable steps

• You often end up in a better place

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 10

Do the Simplest Thing

• Assume simplicity
– Consider the simplest thing that could possibly work
– Iterate to the needed solution

• When coding:
– Build the simplest possible code that will pass the tests
– Refactor the code to have the simplest design possible
– Eliminate duplication

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 11

The Rules of Simple Design
IN PRIORITY ORDER!

1. The code passes all tests

2. There is no duplication

3. The code expresses the programmer’s intention

4. Using the smallest number of classes and methods

!

Higher priority rules must be satisfied first

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 12

Automated Tests

• Unit tests
– Tests that show the programmer that the code does what is expected
– Specifies what the code must do
– Provide examples of how to use the code (documentation)
– All tests are run every few minutes, with every change
!

• Acceptance tests
– Tests that show the stake holders that the code delivers the feature
– All tests are run at least daily
!

• All tests are Automated, you run them with every change

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 13

What is Tested?

• Every class (module) has one or more unit tests
• Test everything that can possibly break

• If it can’t break, don’t test it
– Always a judgment call

int EventLog::GetCapacity()
{
 return capacity;
}

EventLogTest EventLog

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 14

Testing Frameworks

• Tests must be automated
– Otherwise they won’t be run

• Most OO languages have a testing framework, xUnit
– JUnit, CppUnit(Lite), PyUnit, NUnit, VBUnit
– A simple tool
– Collects, organizes and automatically calls your test code

• Graphical test runner
– Green bar makes you feel good

• Could be added to build environment

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 15

Building Test Classes

• All of the testing frameworks work similarly
• Your class inherits from a test framework class,

allowing your test to be plugged into the framework

TestCase

EventLogTest
testLogOne()
testLogMany()
testOverFlow()
testPrint()
!

EventLog
LogIt()
Count()
Print()

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 16

CppUnitLite

• Free C++ unit test harness
• Uses macros to make test definition easy
• Can be used to test C code
• Tests are written that check binary conditions
• Tests are repeatable
!

• Download it from www.objectmentor.com

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 17

EventLog Example - Demo

EventLog

+ LogIt(const char*, int)
+ GetCount() : int
+ Print()

• Create a class that logs events
• Each event has a character string and an integer
• The log throws out the oldest entry once it exceeds

its capacity
• The log can print itself
!

• See paper for complete  
example

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 18

Focus on Interface

• The test treats the object being tested like black box
• Encourages design to be done from a client point of view

– The test is a user
• You confront interface design issues

– What are the parameters?
– What is the return type?
– What is the behavior?
– Who controls object lifetime?

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 19

Embedded Test-Driven Developers

• Get code working in a friendlier environment prior
to running on the target
– Feedback
– Efficient

• Decouple the application logic from the specific
hardware dependencies

• Feed events into the system, verify the response

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 20

Design Impacts

• Test-first design promotes testing a class in isolation
– It must be decoupled from other classes

• Produces loosely coupled, highly cohesive systems
– The hallmark of a good design
– Object Oriented Design Principles and Programming

Languages help

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 21

Testing a System of Objects

• Sure, unit tests work fine for a simple class like
EventLog. But what about a class that collaborates
with other classes?

• Home alarm system example
– Front panel with LEDs, push buttons, times square

display
– Phone line
– The hardware won’t be ready for 3 months (one week

before delivery)

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 22

Collaborators

• Most classes being tested need collaborators
– e.g., Panel and phone line.

• Sometimes you can test with the real collaborators
• Sometimes you can’t or shouldn’t

– The hardware is not ready, or it is slow, or hard to
control

– It is difficult to get the response needed from the
collaborator

• Impersonate collaborators with a Mock Object

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 23

Mock Objects

• Unwanted dependencies can be broken with an
interface

HomeGuardTest
testBreakIn()
!

HomeGuard
windowIntrusion()
!

FrontPanel
displayMessage()
soundAlarm()
!

Model12FrontPanel
soundAlarm()
!

MockFrontPanel
soundAlarm()
!

HomeGuardTest
testBreakIn()
!

HomeGuard
windowIntrusion()
!

<<interface>>
FrontPanel

displayMessage()
soundAlarm()
!

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 24

Demo

• Email me at grenning@objectmentor.com for the
example home guard code, or leave me a card with
your request.

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 25

Learning Test-First Design

• A skill which must be practiced
– Initially awkward

• Requires discipline
– Peer pressure
– “I know how to write the class, but I don’t know how to test it”

• It's an addiction rather than discipline
– Kent Beck – Author of

– Extreme Programming Explained
– Test Driven Development

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 26

Productivity and Predictability

• Defects kill predictability:
– Cost of fixing is not predictable
– When they materialize is not predictable

• Test-driven is predictable:
– Working at a steady pace
– Results in fewer bugs
– More productive than “debug-later programming”

• Test-driven programmers rarely need the debugger

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 27

Objections Heard

• “I know how to just write the code, but I don’t
know how to test it.”

• “We have to write twice as much code”
• “I have to debug twice as much code.”
• “We have a testing department.”
• “I can test my code after I write it.”
• “That might work on easy software but our

problem is really tough”
• “You need the target hardware”

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 28

How do Acceptance Tests Fit In
Acceptance tests use the application the same way the

hardware does, only they bypass the hardware

Hardware
Implementation

Layer
<<interface>>

Application Services

Application

+ service1()
+ service2()

Acceptance
Tests<<interface>>

Hardware
Control

Hardware
Fake-out

Layer

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 29

!
Network

Core System Logic Depends on Hardware
Specifics

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 30

Separate Core System Logic from
Hardware Specifics

!
Network

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 31

Test Core System Logic Independent of
Hardware Specifics

Tests and
Simulations

Tests and
Simulations

XP and Embedded Software Development – Class #421 James W Grenning
Copyright © March 2002-2003 All Rights Reserved grenning@objectmentor.com 32

What’s in it for Embedded Developers

• Decouples embedded application from target
hardware

• Progress can be made without target hardware
• Side effect safety net
• Can avoid costly simulators in favor of simpler

Mock Objects
• Can avoid many long debus session

